期刊文献+

稀疏主成分在综合评价中的应用 被引量:5

The Application of Sparse Principal Component Analysis in Comprehensive Assessment
下载PDF
导出
摘要 稀疏主成分分析是最近才提出来的一种多元统计分析方法,并成功地用来解决若干降维和数据处理问题,论文分析和总结了稀疏主成分的优点,给出了求解各种稀疏主成分的算法,并将各种稀疏主成分分析方法引入综合评价,通过实例说明了稀疏主成分在综合评价应用中的有效性。 The recently referred sparse principal component analysis(S-PCA) is a method of multivariate statistical analysis, which has been used in date processing and dimensionality reduction successfully. In this paper, we point out the advantage of sparse principal component analysis, and give all kinds of algorithms to solve sparse principal component. Finally, we introduce various S-PCA to comprehensive evaluation and explain the efficiency on the basis of examples.
出处 《财经理论与实践》 CSSCI 北大核心 2009年第5期106-109,共4页 The Theory and Practice of Finance and Economics
基金 国家自然科学基金资助项目(10771217)
关键词 稀疏主成分 降维和数据处理 综合评价 Sparse Principal Component, Date Processing and Dimensionality Reduction, Comprehensive Assessment
  • 相关文献

参考文献10

  • 1李靖华,郭耀煌.主成分分析用于多指标评价的方法研究——主成分评价[J].管理工程学报,2002,16(1):39-43. 被引量:245
  • 2Jolliffe I. T. Rotation of Principal Components : Choice of Normalization Constraints [ J]. Journal of Applied Statistics, 1995, 22 (1): 29 -35.
  • 3Jolliffe I. T. , Uddin, M.. The Simplied ComponentTechnique- An Alternative to Rotated Principal Components [ J ]. Journal of Computational and Graphical Statistics, 2002, 9 (3) : 689 -710.
  • 4彭维湘.多变量综合的主成分旋转法研究[J].数量经济技术经济研究,2005,22(6):61-73. 被引量:14
  • 5Cadima J. ,Jolliffe I.T. Loadings and Correlations in the Interprvtation of Principal Components [ J ]. Journal of Applied Statistics, 1995, 22 (1) :203 - 214.
  • 6Tibshirani R. Regression Shrinkage and Selection via the Lasso [J]. Journal of the Royal Statistical Society, Series B, 1996, 58 ( 1 ) :267 -288.
  • 7Jolliffe I. T. Trendaflov N. ,Uddin M.. A modifed principal component technique based on the Lasso[ J]. Journal of Computational and Graphical Statistics, 2005, 12 (2) :531 -547.
  • 8Zou H. The Adaptive Lasso and its Oracle Properties[ J]. Journal of the American Statistical Association, 2006, 101 ( 3 ) : 1418 - 1429.
  • 9Leng C, Wang H. On general adaptive sparse principal component analysis [ J ]. Journal of Computational and Graphical Statistics, 2008, 15 (3):683-697.
  • 10钱争鸣,陈伟彦.我国工业经济效益指标评价与主成分分析的实证研究[J].统计研究,1999,16(7):49-52. 被引量:24

二级参考文献26

共引文献279

同被引文献39

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部