期刊文献+

基于响应面的涡轮叶片冷却通道设计优化 被引量:10

Cooling Passage Design Optimization of Turbine Blades Based on Response Surface Methodology
原文传递
导出
摘要 基于响应面近似技术,对涡轮冷却叶片的气动和传热性能进行了设计优化。以冷却通道肋的位置为设计变量,采用拉丁超立方抽样在变量设计空间里选取样本点,根据样本点建立叶片计算模型,采用流-热耦合分析方法得到叶片气动与传热性能参数,拟合得到叶片壁面最高温度、平均温度和总压损失关于设计变量的四阶响应面近似模型。采用响应面模型动态修正技术,进行了回流式冷却通道的设计优化,得到了优化解,减少了总压损失,使叶片最高温度下降了24.5K,叶片壁面平均温度下降了34.4K。 In this study, an aerodynamic and heat transfer optimization design is carried out for cooling turbine blade. The locations of the ribs are determined as design variables and the Latin hypercubes technology is used to generate the experimental design points. With a coupled aerodynamic and heat transfer analysis, the blade aerodynamic and heat transfer performances are calculated at each design point, and then the quartic polynomials are employed to construct a response surface model (RSM). Based on the RSM, the optimization of the blade cooling passage is implemented to minimize the maximum temperature of the blade, the facet average temperature of the blade surface and the total pressure loss. Meanwhile, the response surface model is modified at each step of optimization. Finally, the optimization results are obtained. The maximum temperature of the blade is reduced by 24.5 K while the average blade surface temperature is reduced by 34.4 K, and the total pressure loss is also reduced.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第9期1630-1634,共5页 Acta Aeronautica et Astronautica Sinica
基金 国家"863"计划(2006AA04Z401 2007AA04Z404) 国家自然科学基金(50375124) 教育部博士点基金(N6CJ0001)
关键词 航空发动机 响应面 冷却通道 优化 耦合分析 涡轮叶片 aeroengine response surface cooling passage optimization coupled analysis turbine blade
  • 相关文献

参考文献13

  • 1de Palma P. Accurate numerical simulation of compressible turbulent flows in turbomachinery[R]. AIAA 2001-2926, 2001.
  • 2Janus J M, Newman J C Ⅲ. Aerodynamic and thermal design optimization for turbine airfoils[R]. AIAA-2000-840, 2000.
  • 3Garg V K, Ameri A A. Two-equation turbulence models for prediction of heat transfer on a transonic turbine blade [J]. International Journal of Heat and Fluid Flow, 2000, 22(6) : 593-602.
  • 4Jameson A. A perspective on computational algorithms for aerodynamic analysis and design[J]. Progress in Aerospace Sciences, 2001,37(2) : 197-243.
  • 5Martin T J. Computer automated multi-disciplinary analysis and design optimization of internal cooled turbine blades[D]. University Park: Pennsylvania State University, 2001.
  • 6Shyy W, Papila N, Vaidyanathan R, et al. Global design optimization for aerodynamics and rocket propulsion components[J]. Progress in Aerospace Sciences, 2001,37 ( 1 ) : 59-118.
  • 7Bozakaya K, Sumer B, Kuran B, et al. Reliability analysis of a solid rocket motor based on response surface method and Monte Carlo simulation[R]. AIAA-2005 3598,2005.
  • 8Kuran B, Hasanoglu M S, Bozkaya K. Robust design optimization for multiple responses using response surface methodology and Taguchi approach: solid rocket motor application[R]. AIAA-2007-1977,2007.
  • 9Vervenne K, Fatemi J, van Keulen F. Efficiency improvement of response surface building using fast reanalysis methods[R]. AIAA-2004-1874,2004.
  • 10Venter G, Haftka R T,Chirehdast M. Response surface approximations for fatigue life prediction[R]. AIAA 1997- 1331,1997.

同被引文献105

引证文献10

二级引证文献72

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部