期刊文献+

小扰动在二维超声速边界层中的弱非线性传播

Weak Nonlinear Evolution of Small Amplitude Disturbances in 2D Supersonic Boundary Layer
原文传递
导出
摘要 采用非线性抛物化稳定性方程(PSE)研究了非平行边界层的弱非线性稳定性。通过在流向采用一阶向后差分,法向采用四阶中心差分,并用预估-校正迭代来耦合非线性项,发展出了求解非线性PSE的数值方法。研究了不同幅值扰动及其高倍谐波的演化情况,发现随着基频扰动幅值的增大,高倍谐波可能失稳,而且失稳的位置会随着基频扰动的增大而向上游移动。通过观察涡量的发展可以发现涡破碎现象。算例与Navier-Stokes方程的直接数值模拟(DNS)结果作了比较,初步检验了其正确性。 The weak nonlinear instability of a nonparallel boundary layer is studied by nonlinear parabotized stability equations(PSE). The PSEs are solved by employing a first--order backward difference scheme in streamwise direction and a fourth-order central difference scheme in the wall-normal direction. The nonlinear terms are acquired by the predictor-corrector and iterative approach. The evolution of some small amplitude disturbances and their high-order harmonic waves are studied. The results show that stable harmonic waves may become unstable with the existence of strong basic disturbance, and the critical positions at which they become unstable tend to move upwind with the increasing amplitude of the basic disturbance. The results also show that large vortices are likely to break into small vortices. The nonlinear nonparallel results are compared with data of direct numerical simulations (DNS) based on Navier-Stokes equations, which indicated the correctness of the PSE approach.
出处 《航空学报》 EI CAS CSCD 北大核心 2009年第9期1635-1640,共6页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10872018 10672012)
关键词 抛物化稳定性方程 非线性 非平行流 超声速边界层 parabolized stability equation nonlinear nonparallel flow supersonic boundary layer
  • 相关文献

参考文献11

二级参考文献46

  • 1董亚妮,周恒.二维超音速边界层中三波共振和二次失稳机制的数值模拟研究[J].应用数学和力学,2006,27(2):127-133. 被引量:3
  • 2马前容.三维可压缩非平行流边界层稳定性问题研究[M].南京:南京航空航天大学,1998..
  • 3张永明,周恒.抛物化稳定性方程在可压缩边界层中应用的检验[J].应用数学和力学,2007,28(8):883-893. 被引量:13
  • 4Chang C L,AIAA 91 1636,1991年
  • 5Herbert T,Bertolotti F P.Analysis of nonparallel boundary layers[J].J Bull Am Phys Soe,1987,32:2079—2806.
  • 6Nayfeh A H. Stability of three-dimensional boundary layer[J]. AIAA J, 1980,18(4):406-416.
  • 7Herbert T. Parabolised stability equations[J]. Annual Review of Fluid Mechanics, Paloalto, CA, Reviews, Ine, 1997,29:245-285.
  • 8Xia Hao, Tang Dengbin. A detailed non-parallel stability analysis using parabolic stability equation [J].Computational Fluid Dynamics Journal, 2002, 10(4) :322-327.
  • 9Vadyak J. Simulation of diffuser duet flowfields using a three-dimensional Euler/Navier-Stoeks algorithm[R]. AIAA-86-0310, 1986.
  • 10Bertolotti F P, Herbert T, Spalart P R. Linear and nonlinear stability of the blasius boundary layers[J]. J Fluid Mech, 1992, 242:441-474.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部