期刊文献+

基于模糊点数据的主成分分析 被引量:2

Principal Component Analysis Based on Fuzzy Points Data
下载PDF
导出
摘要 主成分分析是数据压缩和特征提取的非常有效的统计方法.在经典的主成分分析中,每个训练数据在构建主成分时的作用是相同的.然而,在许多实际问题中,每个训练数据的意义和作用是不同的,对于重要的数据我们应给予充分的重视,而对于不可信数据(可能是异常数据)应限制其作用.文中给每个训练数据赋予一个置信权重,将训练数据视为样本空间的模糊点,研究了基于模糊点数据的主成分分析.数值实验表明,该方法能够有效控制异常点对主成分的影响,同时,该方法也为数据先验信息的利用提供了一个可行的途径. Principal component analysis(PCA) is an effective statistical method for data compression and feature extraction. In classical PCA, all training data are treated equally in constructing principal components. However, the significance and effect of each training data are different in many applications. We should pay more attention to the important training data and restrict the effect of the unbelievable data (they may be outliers), In this paper,we apply a confidence weight to each training data, and consider training data as fuzzy points in sample space, and work over PCA based on fuzzy points data. An experiment on simulated data shows that our method can control possible outliers effectively. Meanwhile,our method provides a feasible way for using prior information.
出处 《甘肃联合大学学报(自然科学版)》 2009年第5期5-8,12,共5页 Journal of Gansu Lianhe University :Natural Sciences
关键词 主成分分析 模糊点数据 主轴 principal component analysis fuzzy points data principal axes.
  • 相关文献

参考文献4

  • 1张尧庭.多元统计分析引论[M].北京:科学出版社,2003.
  • 2GIORDANI P, HENK A L. Principal component analysis of symmetric fuzzy data[J]. Computational Statistics, 2004,45(3) :519-548.
  • 3YABUUCHI Y, WATADA J. Fuzzy principal component analysis for fuzzy data[J]. Proceedings of the Sixth IEEE international Conference on fuzzy Systems, 1997(6) : 1127-1132.
  • 4魏立力,龙卫江,张文修.基于模糊支持向量机的数据域描述[J].计算机科学,2004,31(1):108-109. 被引量:6

二级参考文献6

  • 1[1]Vapnik V.Statistical Learning Theory.Wiley,1998
  • 2[2]Cristianini N,Shaw-Taylar J.An Introduction to Support Vector Machines.Cambridge,UK:Cambridge University Press,2000
  • 3[3]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining and Knowledge Discovery,1998,2(2):121~167
  • 4[4]Tax D M J,Duin R P W.Support Vector Domain Description.Pattern Recognition Letters,1999,20(11-13):1191~1199
  • 5[5]Malyscheff A M,Trafalis T B,Raman S.From Support Vector Machine Learning to the Determination of the Minimum Enclosing Zone.Computers and Industrial Engineering,2002,42(1):59
  • 6[6]Lin C-F,Wang S-D.Fuzzy Support Vector Machines.IEEE Trans.on Neural Networks,2002,13(2):464~471

共引文献61

同被引文献18

  • 1冯梅.模糊综合评价模型在教师评价中的应用[J].数学的实践与认识,2004,34(11):35-38. 被引量:20
  • 2林和平,杨晨.模糊主成分分析方法的研究与分析[J].航空计算技术,2006,36(6):16-20. 被引量:15
  • 3彭祖赠,孙韫玉.模糊(Fuzzy)数学及其应用[M].武汉:武汉大学出版社,2004.
  • 4JOLLIFFE I T.Principal Component Analysis[M].Berlin:Springer,2002.
  • 5GNANADESIKAN R.Methods for Statistical Data Analysis of Multivariate Observations[M].New York:John Wiley,1977:53-62.
  • 6OJA E.A Simplified Neuron Model As a Principal Component Analysis[J].Math Biology,1982,15(3):267-273.
  • 7SCHOLKOPF B,SMOLA A,MULLER K R.Nonlinear Component Analysis as a Kernel Eigenvalue Problem[J].Neural Computation,1998,10(5):1299-1319.
  • 8YANG Tai-Ning,WANG Sheng-De.Robust Algorithm for Principal Component Analysis[J].Pattern Recognition Let-ters,1999(20):927-933.
  • 9BOLTON R J,HAND D J,WEBB A R.Projection Techniques for Nonlinear Principal Component Analysis[J].Statis-tics and Computing,2003,13(3):267-276.
  • 10YABUUCHI Y,WATADA J.Fuzzy Principal Component Analysis for Fuzzy Data[C] //Proceedings of the Sixth IEEEInternational Conference on Fuzzy Systems.New York:IEEE Press,1997:1127-1130.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部