期刊文献+

蚁群算法求解性能之研究-以TSP问题为例

The Performance study of Ant Colony Algorithm in TSP
下载PDF
导出
摘要 蚁群算(Ant Colony Optimization,ACO)为了获得较优解,算法中的蚂蚁除了可以直接选择已经走过的路径外,也会选择未曾走过的路径,即“利用”与“探究”两种路径选择机制。这两种路径选择的概率是影响蚁群算法求解性能的关键。通过对旅行商问题(TSP)的仿真实验,结果表明,当“利用”被采用的概率很高时,可能会使蚁群算法的性能降低。当这两种机制被采用的概率差不多时,可以提高蚁群算法的性能。 In order to obtain a better solution, not only the ants in ACO (Ant Colony Optimization)can choose directly the path has been traversed directly, they can also choose the path has not been passed, that is "exploitation" and "explore" two kinds of path selection mechanism. The chosen probability of these two path selection mechanism may affect the performance of ACO. Through the simulation in TSP, the experimental results showed that when the "exploitation" a high probability of being adopted, it may cause performance degradation on ant colony algorithm. When these two kinds of mechanisms having been used in the probability are more or less, the performance of ant colony algorithm can be improved.
作者 唐晓寒 傅宏 张丽 TANG Xiao-han, FU Hong, ZHANG Li (1.College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; 2. Zhengzhou Hualiang Technology Co., Ltd, Zhengzhou 450046, China)
出处 《电脑知识与技术》 2009年第10期7977-7978,共2页 Computer Knowledge and Technology
关键词 蚁群算法 路径选择 旅行商问题 ACO Path-Selection TSP
  • 相关文献

参考文献1

二级参考文献20

  • 1M Dorigo. Optimiztion, Learning and Natural Algorithma (in Italian)[M]. Ph. D. thesis, Dipartimento di Elettronica, Politecnico di Milano, IT, 1992.
  • 2M Dorigo, V Maniezzo and A Colorni. The ant system: Optimization by a colony of cooperating agents [ J ]. IEEE Transactions on Systems,Man, and Cybernetics Part B, 1996, 26(1): 29-41.
  • 3M Dorigo and L M Gambardella. Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem[J]. IEEE Transactions on Evolutionary Computations, 1997, 1 ( 1 ): 53 - 66.
  • 4L M Gambardella and M Dorigo. Solving Symmetric and Asymmetric TSPs by Ant Colonies [ C ]. In Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC'96), IEEE Press,1996. 622 - 627.
  • 5T Stutzle and H H Hos. lmprovements on the Ant System: Introducing the MAX- MIN Ant System[J]. In R.F. Albrecht G. D. Smith, N.C. Steele, editor, Artificial Neural Networks and Genetic Algorithms,Springer Verlag,Wien New York, 1998. 245 - 249.
  • 6T Stutzle and H H Hoos. The MAX - MIN Ant System and Local Search for Traveling Salesman Problem [ A ]. In T. Baeck, Z.Michalewicz, and X. Yao, editors, Proceedings of the IEEE International Conference on Evolutionary Conputation ( ICEC' 97), 1997. 309-314.
  • 7T Stutzle and H H Hoos. MAX - MIN Ant System and Local Search for Combinatorial Optimization Problems[M]. In S. Voss, S. Martello, I.H. Osman, and C. Roucairol, editors, Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, Kluwer,Boston, 1999. 313 - 329.
  • 8B Bullnheimer, R F Hartl, and C Strauss. A New Rank Based Version of the Ant System - A Computational Study [ J]. Central European Journal for Operations Research and Economics, 1998.
  • 9L M Gambardella, E D Taillard, and M Dorigo. Ant colonies for the QAP. Journal of the Operational Research Society[J] (JORS) , 1999,50(2): 167- 1176.
  • 10A Colorni, M Dorigo, V Maniezzo, and M Trubian. Ant system for job- shop scheduling[J]. Belgian Journal of Operations Research,Statistics and Computer Science (JORBEL) , 1994, 34:39 - 53.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部