期刊文献+

一种改进的运动目标检测方法

An Improved Method of Motion Detection
下载PDF
导出
摘要 视频序列中的运动目标检测是计算机视觉、视频监控等领域的关键问题。背景差分法是目前运动目标检测中最常用的一种方法.而构造一个自适应更新的背景模型是背景差分法的核心。利用运动目标图像变化比背景图像变化要快的特点,提出了一种改进的构建并实时更新背景图像的方法。实验表明,该方法计算量小、实时性好、并且能够确保较好的检测精度。 Moving target detection in Video sequence is one of the critical issues in the fields of computer vision and video surveillance. Background subtraction is a typical approach to detect moving targets. The core of background subtraction is how to construct an adaptive updating background model. This paper provides an improved method for constructing the background image and updating it at time, based on the feature that the motion image changes faster than the background image. Experiments proved that this method has lower computational complexity, better real-time performance and higher accuracy of detection.
作者 潘亚男 白帆 PAN Ya-nan, BAI Fan (Lanzhou Jiaotong University, School of Electronic and Information Engineering, Lanzhou 730070, China)
出处 《电脑知识与技术》 2009年第10期8026-8027,8030,共3页 Computer Knowledge and Technology
关键词 运动目标检测 背景差分法 背景模型 motion detection background subtraction background model
  • 相关文献

参考文献1

二级参考文献9

  • 1阮秋琦 阮宇志 译.Rafael C.Gonzalez Richard E.Woods著.数字图像处理(第二版)[M].北京:电子工业出版社,2003年第1版..
  • 2Hu Wei-ming, Tan Tie-niu, Wang Liang, et al. A survey on visual surveillance of object motion and behaviors[J]. IEEE Transactions on Systems, Man and Cybernetics-Part C: Applications and Reviews, 2004, 34(3) : 334-352.
  • 3Wren C, Azarbayejani A, Darrel T, et al. Pfinder: Real-time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) :780-785.
  • 4Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking [ A ]. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition [ C ] , Fort Collins, Colorado,USA,1999,246-252.
  • 5Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction [ A ]. In: Proceedings of International Conference on Computer Vision[ C], Kerkyra, Greece, 1999:751-767.
  • 6Shen F, Hasegawa O. An adaptive incremental LBG for vector quantization [ J ]. Neural Networks, 2006, 19 ( 5 ) :694-704.
  • 7Tomasi C. Estimating Gaussian mixture densities with EM-a tutorial [ EB/OL]. http://www. cs. duke. edu/courses/spring04/cps196.1/ handouts/EM/tomasiEM. pdf, 2004-03-18.
  • 8Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation [ A ]. In: Proceedings of Image and Vision Computing [ C ], Auckland, New Zealand, 2002:267-271.
  • 9Cheung S C, Kammath C. Robust techniques for background subtraction in urban traffic video [ A ]. In: Proceedings of SPIE Electronic Imaging: Visual Communications and Image Processing [ C ], San Jose, California, USA, 2004:881-892.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部