期刊文献+

汽油多参数拉曼光谱分析仪中的稳健支持向量机方法 被引量:7

Robust SVM in multi-parameter gasoline analyzer using Raman spectroscopy
下载PDF
导出
摘要 由于拉曼光谱可以反映汽油各有机物基团丰富的信息,拉曼光谱更加适合于汽油质量指标的快速分析,并可同时测定多种参数。为避免少量异常训练样本对校正模型的影响,本文采用了一种迭代的稳健支持向量机算法。该方法首先求取训练样本的回归残差,然后利用残差的正态分布置信区间来鉴别异常样本并选取正常样本,最后用选出的正常样本作为训练样本并建立最小二乘支持向量机模型,对测试样本进行预测。将本文的算法应用于汽油多参数拉曼光谱快速分析仪中,结果证明:该方法具有很好的稳健性,同时具有很好的预测精度。 Raman spectroscopy is more suitable for analyzing the properties of gasoline, because Raman spectroscopy can reflect the information of the organic compound in gasoline. In order to overcome the influence of several outliers to calibration model, a robust version of support vector machine is introduced to overcome the influence of the outliers. In the proposed approach, regression error of the original training data set is computed, and then the confidence interval of the residuals distribution is applied iteratively to detect those outliers and select normal samples. In fact, a LS-SVM is created from the model being trained with the selected training sub-dataset without outliers to estimate the test samples. Applying this approach in Raman spectrum analysis for gasoline properties, experimental results show its robustness and accuracy.
作者 包鑫 戴连奎
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第9期1829-1835,共7页 Chinese Journal of Scientific Instrument
基金 国家863计划项目(2006AA04Z169)资助项目
关键词 汽油 拉曼光谱 多参数 稳健支持向量机 gasoline Raman spectroscopy multi-parameter robust support vector machine
  • 相关文献

参考文献14

  • 1KELLY J, BARLOW C, JINGUJI T, et al. Prediction of gasoline octane numbers from near-infrared spectral features in the range 660-1215 nm[J]. Analytical Chemistry, 1989,61:313-320.
  • 2施玉珍,陈志春,林贤福.拉曼光谱与红外光谱无损检测技术新进展[J].分析化学,2005,33(2):272-276. 被引量:35
  • 3杜树新,吴铁军.NIR汽油辛烷值测定仪中的支持向量机方法[J].仪器仪表学报,2004,25(5):582-586. 被引量:5
  • 4COOPER J B, WISE K L, GROVES J, et al. Determination of octane number and Reid vapor pressure of commercial petroleum fuels using FT-Raman spectroscopy and partial least-squares regression analysis[J]. Analytical Chemistry, 1995,67:4096-4100.
  • 5COOPER J B, WISE K L, WELCH W T, et al. Determination of weight percent oxygen in commercial gasoline: A comparison between Fr-Raman, FT-IR, and dispersive near-IR spectroscopies[J]. Applied Spectroscopy, 1996,50 (7): 917-721.
  • 6COOPER J B, WISE K L, WELCH W T, et al. Comparison of near-lR, Raman, and mid-IR spectroscopies for the determination of BTEX in petroleum fuels[J]. Applied Spectroscopy, 1997,51(11):1613-1620.
  • 7QIN X S, DAI L K. Determination of gasoline octane number using Raman spectroscopy and least squares support vector machines[C]. Proceedings of the 5th World Congress on Intelligent Control and Automation, 2004, 3805-3809.
  • 8包鑫,戴连奎.基于局部最小二乘支持向量机的光谱定量分析[J].分析化学,2008,36(1):75-78. 被引量:19
  • 9MARIN P D, VARO G A, GUERRERO J E. Non-linear regression methods in NIRS quantitative analysis[J]. Talanta, 2007,72(1):28-42.
  • 10VAPNIK V. Statistical learning theory[M]. New York: John Wiley & Sons, 1998.

二级参考文献49

共引文献91

同被引文献142

引证文献7

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部