期刊文献+

用二次判别方法识别蛋白质β-发夹模体 被引量:2

RECOGNITION OF β-HAIRPIN MOTIFS IN PROTEINS BY USING QUADRATIC DISCRIMINANT
原文传递
导出
摘要 基于氨基酸序列,用打分值、离散增量、自相关函数值和距离值来表示β-发夹模体信息,通过二次判别方法对上述信息进行融合,预测数据库ArchDB40和EVA中的β-发夹模体。文章使用的β-发夹模体包含的loop长为2~10个氨基酸,当序列模式长为17个氨基酸时,对两个数据库中β-发夹5交叉检验预测的总精度分别达到83.1%和80.7%,相关系数达到0.59和0.61,好于前人的预测结果。 Based on amino acid sequence, by using score of matrix, increment of diversity, value of auto-correlation information and distance to express the information of β-hairpin motifs, a quadratic discriminant method for predicting β-hairpin motifs in ArchDB40 and EVA database was proposed. In this paper, predicting B-hairpin motifs with the loop length of 2-10 amino acids, when fixed-length pattern is 17 amino acids, the overall accuracy of prediction are 83.1% and 80.7% and Matthew's correlation coefficients are 0.59 and 0.61 for the above two database using 5-fold cross-validation, respectively. Predicted results are better than previous results.
出处 《生物物理学报》 CAS CSCD 北大核心 2009年第4期275-281,共7页 Acta Biophysica Sinica
基金 国家自然科学基金(30960090) 内蒙古自治区高等学校科学研究项目(NJZY08059)~~
关键词 Β-发夹模体 打分函数 离散增量 自相关函数 二次判别 β-hairpin motif Scoring function Increment of diversity Auto-correlation function Quadratic discriminant
  • 相关文献

参考文献17

  • 1Jenny TF, Gerloff DL, Cohen MA, Benner SA. Predicted secondary and super secondary structure for the serine-threonine-specific protein phosphatase family. Proteins,1995,21(1):1-10.
  • 2Godzik A, Skolnick J. Simulations of the folding pathway of triose phosphate somerase-type alpha/beta barrel proteins. Proc Natl Acad Sci USA, 1992,89(24):12098-12102.
  • 3Wintjens RT, Rooman MJ, Wodak SJ. Automatic classification and analysis of alpha alpha-turn motifs in proteins. Journal of molecular biology, 1996,255(11):235-253.
  • 4Cruz X, Hutchinson EG, Shepherd A, Thornton JM. Toward predicting protein topology: an aproach to identifying β hairpins. Proc Natl Acad Sci USA, 2002,99(17):11157-11162.
  • 5Kuhn M, Meile J, Baker D. Strand-loop-strand motifs: prediction of hairpins and diverging turns in proteins. Bioinformatics, 2004,54(2):282-288.
  • 6Kumar M, Bhasin M, Natt NK, Raghava GPS. βhairPred: prediction of β-hairpins in a protein from multiple alignment information using ANN and SVM techniques. Nucleic Acids Research, 2005,33(Web-Server-Issue): 154-159.
  • 7Hu XZ, Li QZ. Prediction of the β -Hairpinsin proteins using support vector machine. The Protein Journal, 2008,27 (2): 115-122.
  • 8Schones DE, Sumazin P, Zhang MQ. Similarity of position frequency matrices for transcription factor binding sites. Bioinformatics, 2005,21(3):307-303.
  • 9Wasserman WW, Sandelin A. Applied bioinformatics for the identification of regulatory elements. Nature Reviews Genetics, 2004,5(4):276-287.
  • 10Claverie JM, Audic S. The statical significance of nucleotide position-weight matrix matches. CA BIOS, 1996,12(5):431-439.

二级参考文献11

  • 1Ding C H Q, Dubchak I. Multi-Class Protein Fold Recognition Using Support Vector Machines and Neural Networks.Bioinformatics, 2001, 17(4): 349-358
  • 2Nakashima H, Nishikawa K, Ooi T. The Folding Type of a Protein Is Relevant to the Amino Acid Composition. J Biochem, 1986, 99(1): 152-162
  • 3Zhang C T, Lin Z S, Zhang Z D, et al. Prediction of the Helix/Strand Content of Globular Proteins Based on Their Primary Sequences. Protein Engineering, 1998, 11(11) : 971-979
  • 4Cornette J L, Cease K B, Margali H, et al. Hydrophobicity Scales and Computational Techniques for Detecting Amphipathic Structures in Proteins. J Mol Biol, 1987, 195(3) : 659-685
  • 5Vapnik V. The Nature of Statistical Learning Theory. New York: Springer, 1995
  • 6Vapnik V. Statistical Learning Theory. New York: Wiely, 1998
  • 7Zhang S W, Pan Q, Zhang H C, et al. Classification of Protein Quaternary Structure with Support Vector Machine.Bioinformatics, 2003, 19(18): 2390-2396
  • 8Dubchak I, Muchnik I, Mayor C, et al. Recognition of a Protein Fold in the Context of the Structural Classification of Proteins (SCOP)Classification. Proteins, 1999, 35(4): 401-407
  • 9Courant R, Hilbert D. Methods of Mathematical Physics. New York: Wildy-Interseience, 1953
  • 10Kawashima S, Ogata H, Kanehisa M. Aaindex: Amino Acid Index Database. Nucleic Acids Res, 1999, 27(1): 368-369

共引文献8

同被引文献18

  • 1胡秀珍,李前忠.用离散量的方法识别蛋白质的超二级结构[J].生物物理学报,2006,22(6):424-428. 被引量:16
  • 2Gurunath R, Beena T K, Adiga P R et al. Enhancing peptide antigeni- city by helix stabilization [ J ]. FEBS Lett, 1995,361 (2/3) : 176 - 178.
  • 3Sun Z R, Jing B. Patterns and conformations of commonly occunring super- secondary structures( basic motifs) in protein data bank[ J]. Protein Chem, 1996,15 (7) :675 - 690.
  • 4Sun Z, Rao X, Peng L, et al. Prediction of protein supersecondary structures based on artificial neural network method [ J ]. Protein Engineering, 1997,10 (7) :763 - 769.
  • 5Cruz X,Hutchinson E G,Shepherd A,et al. Toward predicting protein topology:an approach to identifying β hairpins [ J ]. Proc Nail Acad Sci USA,2002,99(17) :11157 - 11162.
  • 6Kuhn M, Meile J, Baker D. Strand - loop - strand motifs :prediction of hairpins and diverging turns in proteins [ J ]. Bioinformatics, 2004, 54:282 - 288.
  • 7Kumar M, Bhasin M, Natt N K, et al. BhairPred : prediction of β - hairpins in a protein from multiple alignment information using ANN and SVM techniques[ J]. Nucleic Acids Research,2005,33 :W154 - W159.
  • 8Taylor W R,Thomton J M. Prediction of super - secondary structure in proteins[ J]. Nature, 1983,301,540 - 542.
  • 9Taylor W R, Thomton J M. Prediction of super - secondary structure in proteins[J]. J Mol Bio1,1984,173(4) :487 -512.
  • 10Wierenga P K, Hol P W G J. Prediction of the occurrence of the ADP - binding βαβ - fold in proteins, using and amino acid sequence fingerprint[ J]. J Mol Biol, 1986,187 ( 1 ) :5101 - 5107.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部