摘要
基于氨基酸序列,用打分值、离散增量、自相关函数值和距离值来表示β-发夹模体信息,通过二次判别方法对上述信息进行融合,预测数据库ArchDB40和EVA中的β-发夹模体。文章使用的β-发夹模体包含的loop长为2~10个氨基酸,当序列模式长为17个氨基酸时,对两个数据库中β-发夹5交叉检验预测的总精度分别达到83.1%和80.7%,相关系数达到0.59和0.61,好于前人的预测结果。
Based on amino acid sequence, by using score of matrix, increment of diversity, value of auto-correlation information and distance to express the information of β-hairpin motifs, a quadratic discriminant method for predicting β-hairpin motifs in ArchDB40 and EVA database was proposed. In this paper, predicting B-hairpin motifs with the loop length of 2-10 amino acids, when fixed-length pattern is 17 amino acids, the overall accuracy of prediction are 83.1% and 80.7% and Matthew's correlation coefficients are 0.59 and 0.61 for the above two database using 5-fold cross-validation, respectively. Predicted results are better than previous results.
出处
《生物物理学报》
CAS
CSCD
北大核心
2009年第4期275-281,共7页
Acta Biophysica Sinica
基金
国家自然科学基金(30960090)
内蒙古自治区高等学校科学研究项目(NJZY08059)~~
关键词
Β-发夹模体
打分函数
离散增量
自相关函数
二次判别
β-hairpin motif
Scoring function
Increment of diversity
Auto-correlation function
Quadratic discriminant