期刊文献+

冷热交替治疗对肿瘤微循环的损伤及机理研究 被引量:1

Study of alternate cooling and heating treatment induced tumor microvasculature injury
原文传递
导出
摘要 肿瘤微循环对肿瘤生长和转移至关重要.冷热交替治疗已被证实优于以往的单一冷疗或热疗,其对于肿瘤微循环的损伤程度及机理是肿瘤成功治疗的关键,但目前该方向的研究甚少.利用裸鼠脊背皮翼肿瘤视窗模型结合激光共聚焦显微镜技术综合比较了单冷、单热及冷热交替对肿瘤微循环的损伤程度,并建立了分析肿瘤血管在热物理作用下受力的理论模型,通过数值计算获得了冷热交替治疗过程中肿瘤微循环血管壁的受力大小.研究结果发现,冷热交替造成了肿瘤微循环尤其是肿瘤中央成熟血管严重的结构性损伤.冷热交替过程中,血管壁先后受到迅速变化的方向相反的热应力,有可能在血管壁形成微小裂纹.随后加热造成的血流快速再灌注对血管壁的作用力存在应力集中现象,推测血液流动对肿瘤血管壁的快速冲击力很可能是造成血管壁破裂的关键因素,初步揭示了冷热交替治疗过程中肿瘤血管发生严重损伤的机理.
出处 《科学通报》 EI CAS CSCD 北大核心 2009年第17期2590-2596,共7页 Chinese Science Bulletin
基金 国家自然科学基金(批准号:50725622) 上海市工程技术研究中心(编号:08DZ2211201) 国家重点基础研究发展计划(编号:2009CB930403)资助项目
  • 相关文献

参考文献28

  • 1Hildebrandt B, Wust P, Ahlers O, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol, 2002, 43: 33-56.
  • 2Seifert J K, Morris D L. Indicators of recurrence following cryotherapy for hepatic metastases from colorectal cancer. Brit J Surg, 1999,86: 234-240.
  • 3Rubinsky B. Cryosurgery. Annu Rev Biomed Eng, 2000, 2: 157-187.
  • 4Gage A M, Montes M, Gage A A. Destruction of hepatic and splenic tissue by freezing and heating. Cryobiology, 1982, 19: 172-179.
  • 5Kuz’menko A P, Todor I N, Mosienko V S. The effect of the combined use of cryosurgery and hyperthermia on an experimental tumor process. Eksp Onkol, 1990, 12: 60-61.
  • 6Osinsky S P, Rikberg A B, Bubnovskaja L N, et al. Tumour pH drop after cryotreatment and enhancement of hyperthermia antitumour effect. Int J Hyperther, 1993, 9: 297-301.
  • 7Dong J X, Liu P, Xu L X. Immunologic response induced by synergistic effect of alternating cooling and heating of breast cancer. Int J Hyperther, 2009, 25: 25-33.
  • 8Sun J Q, Zhang A L, Xu L X. Evaluation of alternate cooling and heating for tumor treatment. Int J Heat Mass Tran, 2008, 51: 5478-5485.
  • 9Folkman J. The role of angiogenesis in tumor growth. Semin Cancer Biol, 1992, 3: 65-71.
  • 10Eddy H A. Alterations in tumor microvasculature during hyperthermia. Radiology, 1980, 137: 515-521.

二级参考文献8

  • 1Hunt C J, Song Y C, Bateson E A J, Pegg D E. Fractures in cryopreserved arteries [J]. Cryobiology, 1994,31:506-515.
  • 2Song Y C, Pegg D E, Hunt C J. Cryopreservation of the common carotid artery of the rabbit: Optimization of dimethyl sulfoxide concentration and cooling rate [J]. Cryobiology, 1995, 32 : 405 - 421.
  • 3Rubinsky B, Cravalho EG, Mikic B. Thermal stress in frozen organs [J]. Cryobiology, 1980, 17:66-73.
  • 4Rubinsky B. Thermal stress during solidification [J]. ASME Journal of Heat Transfer, 1982, 104:196-199.
  • 5Lin S, Gao D Y, Yu X C. Thermal stress induced by water solidification in a cylindrical tube [J]. ASME Journal Heat Transfer, 1990,112 ; 1079- 1082.
  • 6Gao D Y, Lin S, Watson P F, Critser J K. Fracture phenomena in an isotonic salt solution during freezing and their elimination using glycerol [J]. Cryobiology, 1995, 32:270-284.
  • 7Rabin Y, Steif P S. Analysis of thermal stresses around cryosurgical probe [J]. Cryobiology, 1996, 33:276-290.
  • 8Fung Y C. Biomechanics : mechanical properties of living tissues [M]. New York, Springer-Verlag, 1981. 261-301.

共引文献7

同被引文献1

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部