期刊文献+

一种提高Kernel PCA特征提取性能的核优化算法

An optimizing kernel algorithm for improving the performance of Kernel PCA feature extraction
下载PDF
导出
摘要 基于核的主分量分析(Kernel PCA)能够提取数据的非线性特征,但其性能受核参数的影响非常大.提出了一种新的基于特征空间中非高斯分布估计的核参数优化算法.该方法基于Kernel PCA中最优的参数应能导致特征空间中数据具有高斯分布的思想,通过对特征空间中数据的非高斯性结构进行分析,从反面估计其对高斯分布的逼近程度.采用该方法对各种数据进行实验都有很好的效果,表明了该方法的有效性. Kernel PCA can effectively extract the nonlinear features of data set.However,the performance of Kernel PCA feature extraction is strongly influenced by the parameter of kernel.For this reason,a novel kernel parameter optimizing algorithm based on the nongaussian distribution estimation in feature space is presented.Based on the idea that the optimized kernel parameter can make the mapped data in feature space be Guassian distribution,the nongaussian structure of the mapped data is analyzed,and then the approximation degree of the mapped data's distribution to the Gaussian distribution in feature space is estimated.The experiments show this method is very effective to any type of data.
出处 《西安石油大学学报(自然科学版)》 CAS 北大核心 2009年第5期82-85,共4页 Journal of Xi’an Shiyou University(Natural Science Edition)
基金 国家自然科学基金(编号:10674090)资助项目
关键词 基于核的主分量分析 特征子空间 独立分量分析 最大熵原则 Kernel PCA sub-feature space ICA maximum-entropy principle
  • 相关文献

参考文献7

  • 1Scholkopf B, Smola A, Muller K-R. Nonlinear component ananlysis as a kernel eigenvalue problem [ J ]. Neural Computation, 1998,10(6) : 1299-1319.
  • 2Boser B, Guyon I, Vapnik V. Atraining algorithm foroptimal margin classifiers [ C ]. Proc COLT, Pittsburgh ACM Press, 1992 : 144-152.
  • 3Hyvarinen A. A family of fixed-point algorithms for independent component analysis [ C ]. Proc. IEEE Int Conf Acoustics, Speech, and Signal Processing, Munich, Germany, 1997:3917-3920.
  • 4Hyvarinen A, Oja E. A fast fixed-point algorithm for independent component analysis [ J ]. Neural Comput, 1997: 1483 -1492.
  • 5Hyvarinen A. New approximations of differential entropy for independent component analysis and projection pursuit [ C ]. In Advances in Neural Information Processing Systems, MIT Press, 1998:273-279.
  • 6Hyvarinen A. Gaussian Moments for Noisy Independent Component Analysis [ J ]. IEEE Signal Processing Letters, 1999,6(6) :25-29.
  • 7Mike S, Scholkopf B, Smola A. Kernel PCA and De-Noising in Feature Space[J].Advances in Neural Information Processing Systems, 1999,11:536-524.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部