期刊文献+

基于Gibbs抽样的贝叶斯稳健ARMA模型研究 被引量:4

BAYESIAN ANALYSIS OF ROBUST ARMA MODELS USING GIBBS SAMPLING
下载PDF
导出
摘要 针对ARMA模型建模过程中模型识别和参数估计易受观测值异常点影响问题,构建了同时考虑加性异常点和更新性异常点的ARMA模型.运用基于Gibbs抽样的Markov Chain Monte Carlo贝叶斯方法,估计稳健ARMA模型参数,同步确定观测值中异常点的位置,辨别异常点类型.并利用我国人口自然增长数据进行仿真分析,研究结果表明:贝叶斯方法能够有效地识别ARMA序列的异常点. To solve the problem that the model identification and the parameter estimation in the ARMA models easily affected by the outliers in time series data, this paper constructed a robust ARMA model which has both additive and renewal outliers. The parameters in the robust ARMA models were estimated by Gibbs sampling, and the kinds and locations for the outliers were also determinated simultaneously. The methodology was illustrated by applying it to Chinese population natural increasing, and the results show that the Bayesian method can effectively distinguish the outliers in time series data.
出处 《经济数学》 北大核心 2009年第2期82-90,共9页 Journal of Quantitative Economics
基金 国家自然科学基金项目(70771038) 教育部人文社科规划项目(06JA910001) 教育部新世纪优秀人才支持计划项目(NCET050704)
关键词 ARMA模型 异常点 贝叶斯估计 GIBBS抽样 稳健分析 ARMA models outliers bayesian estimation Gibbs sampling robust analysis
  • 相关文献

参考文献5

  • 1汪建均,胡宗义.ARMA模型在我国电力需求预测中的应用[J].经济数学,2006,23(1):64-68. 被引量:17
  • 2CHEN C, LIU L M. Joint estimation of model parameters and outlier effects in time series [J]. Journal of the American Statistical Association, 1993, 88(3) : 284 - 297.
  • 3BOX G E P, TIAO G C. Intervention analysis with applications to economic and environmental problems [J ]. Journal of American Statistical Association, 1975, 70( 1 ) : 70 - 79.
  • 4ABRAHAM B, CHUANG A. Outlier detection and time series modeling [J ]. Technometrics, 1989, (31) : 241 - 248.
  • 5Ntzoufras I. Bayesian modeling using WinBUGS [M]. New York: Wiley. 2009.

二级参考文献5

共引文献16

同被引文献31

  • 1陈昊.基于广义自回归条件异方差模型的负荷预测新方法[J].电力系统自动化,2007,31(15):51-54. 被引量:49
  • 2朱慧明,林静.贝叶斯计量经济模型[M].北京:科学出版社,2009:66.67.
  • 3Taylor S J. Modeling financial time series [M]. UK: John Wiley and Sons, 1986, 62-95.
  • 4Bollerslev T. Generalized autoregressive conditional heteroscedasticity[J]. Journal of Econometrics, 1986, 31(3): 307-327.
  • 5Chen Hao, Gao Shan. A study on the structure of asymmetric volatility in load series[A]. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies[C], Nanjing, 2008, 737-744.
  • 6Harvey A C, Ruiz E, Shephard N. Multivariate stochastic variance models[J]. Review of Economic Studies, 1994, 61 (2): 247-264.
  • 7Mary N. NIST/SEMATECH e-Handbook of Statistical Methods[EB/OL] .http://www.itl.nist.gov/div898/ handbook/pmc/section5/pmc52.
  • 8Ntzoufras I. Bayesian modeling using WinBUGS[M]. New York: Wiley, 2009.
  • 9黄雁勇,王沁,李裕奇.ARMA模型参数估计算法的改进[J].统计与决策,2009,25(16):7-9. 被引量:10
  • 10焉建国,陈正松,罗志才,李琼.基于AR模型的上海地区地面沉降预测分析[J].大地测量与地球动力学,2009,29(5):121-124. 被引量:14

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部