期刊文献+

极端学习机FIR滤波器的设计

The FIR Filter Design by the Extreme Learning Machine
下载PDF
导出
摘要 极端学习机作为单隐层前向神经网络的一种典型学习算法,学习速度快,泛化能力好,在函数逼近和模式分类领域都有广泛应用.本文把极端学习机的应用拓展到滤波器的设计当中,通过对数字信号处理中实例的计算机仿真,验证该算法设计的FIR滤波器具有较好的性能,能够取得理想的滤波效果,通带与阻带边界频率容易精确控制,且初始条件随机给定,算法速度快. Extreme Learning Machine algorithm is a standard learning algorithm of single hidden feedforward neural networks characterized by great generalization capability and fast learning speed, and is widely applied in the field of function approximations and pattern recognition. This paper discusses the design of FIR filters by ELM algorithm, whose excellent performance is evaluated by computer simulations of some problems from the field of DSP (digital signal processing). The results show that the filter can achieve the desired results, the resistance band frequency of border zone can be controlled precisely with high efficiency, and the algorithm is fast.
作者 李新民 李彬
出处 《深圳职业技术学院学报》 CAS 2009年第5期54-58,共5页 Journal of Shenzhen Polytechnic
关键词 极端学习机 单隐层前向神经网络:FIR滤波器 extreme learning machine (ELM) single hidden feedforward neural networks finite impulseresponse (FIR) filter
  • 相关文献

参考文献7

  • 1Huang G B, Siew C K. Extreme learning machine with randomly assigned RBF kernels [J]. International Journal of Information Technology, 2005, 11 (1): 16-24.
  • 2Zhu Q Y, Qin A K, Suganthan P N, et al. Evolutionary ExtreLearning Machine [J].Pattern Recognition, 2005, 38 (10): 1759-1763.
  • 3Li M B, Huang G B, Saratchandran P, et al. Extreme learning machine: Theory and applications. Neurocomputing, 2005, 68 (1): 306-314.
  • 4Huang G B, Zhu QY, Siew C K. Extreme learning machine: A new learning scheme of feedforward neural networks [A]// Proceedings of International Joint Conference on Neural Networks, IJCNN2004, Budapest, Hungary, 2004: 25-29.
  • 5Guang-Bin Huang, Qin-Yu Zhu, Chee-Kheong Siew Extreme learning machine: heory and applications[J]. Neurocomputing, 2006, 70 (1-3): 489-501.
  • 6周卫东,李英远.基于神经网络的FIR滤波器设计与应用[J].山东大学学报(工学版),2003,33(1):50-54. 被引量:11
  • 7邹阿金,沈建中.正弦基函数神经网络滤波器设计[J].长沙水电师院学报(自然科学版),2001,16(2):16-18. 被引量:3

二级参考文献4

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部