期刊文献+

非自治吊桥方程的一致吸引子及其维数估计 被引量:5

The Uniform Attractor of Non-autonomous Suspension Bridge Equations and Estimates of Its Dimension
下载PDF
导出
摘要 研究了非自治吊桥方程长时间的动力学行为.运用具有两个参数的算子簇来描述非自治无穷维动力系统的方法,证明了该系统的一致吸引子的存在性,并对其Hausdorff维数进行了估计. In this paper,the long-time dynamical behavior of non-autonomous suspension bridge equations is studied. By describing non-autonomous dynamical system of inifinite dimension by an operator family with two parameters,the existence of the uniform attractor of the system is proved. An estimation of Hausdorff dimension of the attractor is given.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第5期557-563,共7页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10726033) 四川省应用基础科研基金(07JY029-012)资助项目
关键词 非自治 吊桥方程 一致吸引子 HAUSDORFF维数 Non-autonomous Suspension bridge equations Uniform attractor Hausdorff dimension
  • 相关文献

参考文献10

二级参考文献71

共引文献24

同被引文献57

  • 1GUO BoLing~1 WANG GuoLian~(2+) Li DongLong~3 1 Institute of Applied Physics and Computational Mathematics,P.O.Box 8009,Beijing 100088,China,2 The Graduate School of China Academy of Engineering Physics,P.O.Box 2101,Beijing 100088,China,3 Department of Information and Computer Science,Guangxi University of Technology,Liuzhou 545006,China.The attractor of the stochastic generalized Ginzburg-Landau equation[J].Science China Mathematics,2008,51(5):955-964. 被引量:11
  • 2马巧珍,钟承奎.非经典反应扩散方程强解的全局吸引子(英文)[J].兰州大学学报(自然科学版),2004,40(5):7-9. 被引量:5
  • 3田立新,徐振源,刘曾荣.耗散孤立波方程的吸引子[J].应用数学和力学,1994,15(6):539-547. 被引量:8
  • 4罗卫华,吕晓亚.一类二阶微分方程解的振动性与渐近性[J].内江师范学院学报,2007,22(4):28-30. 被引量:5
  • 5谷超豪.孤立子及应用[M].杭州:浙江出版社,1990.
  • 6Temam R. Infinite - Dimensional Systems in Mechanics and Physics[ M]. New York : Springer - Verlag,1988.
  • 7Bouard A, Debussche A. On the stochastic korteweg - de vries equation[ J]. J Funct Anal,1998,154:215 -251.
  • 8Bouard A, Debussche A. A stochastic nonlinear schrodinger equation with multiplicative noise[ J]. Commun Math Phys,1999,205:161 -181.
  • 9Bouard A, Debussche A. The stochastic nonlinear schrodinger equation in [ J]. Stochastic Anal Appl,2003 ,21:97 - 126.
  • 10Da Prato G, Debussche A,Temam R. Stochastic Burgers’ equation[ J]. Nonl Diff Eqns Appl,1994,1:389-402.

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部