期刊文献+

基于鱼群算法和Hopfield网络的PID参数寻优 被引量:3

Optimization methodology of PID parameters based on artificial fish-swarm algorithm and Hopfield neural network
下载PDF
导出
摘要 提出1种融合了人工鱼群算法与Hopfield神经网络的PID参数优化算法.该算法前期利用鱼群算法快速随机的群体性全局搜索能力生成问题较优的可行解域,后期利用Hopfield神经网络硬件易实现简单快速的优点得到最优解,有效弥补了Hopfield网络对初始值过于依赖容易陷入局部极值的缺陷.将该算法用于某发动机PID控制中的参数寻优,结果表明新混合算法的整定效果好于Hopfield神经网络,且该算法简单易实现. This paper proposes a new algorithm combining Artificial Fish-Swarm Algorithm (AFSA) with Hopfield Neural Network (HNN). This new algorithm utilizes the fast and stochastic global searching capacity of AFSA to find the relatively excellent feasible solution region in the previous period and then finds the optimal solution by using HNN's advantages of being simple and fast, so as to make up for the deficiency of HNN being prone to fall into local extremum due to its overdependence on initial value. The proposed algorithm is applied to optimize PID parameters of a particular engine. The results show that the tuning availability of the new algorithm is better than the HNN and it is a simple and feasible but effective optimization methodology of PID parameters.
作者 汪蓓蕾
出处 《南京信息工程大学学报(自然科学版)》 CAS 2009年第2期179-182,共4页 Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
关键词 PID参数寻优 人工鱼群算法 HOPFIELD神经网络 optimization of PID parameter artificial fish-swarm algorithm Hopfield neural network
  • 相关文献

参考文献3

二级参考文献5

共引文献917

同被引文献27

  • 1Caccia M, Bibuli M, Bono R, et al. Basic navigation, guidance and control of an unmanned surface vehicle[J]. Autonomous Robots, 2008, 25(8): 349-365.
  • 2Bibuli M, Bruzzone G, Caccia M. Path-following algorithms andexperiments for an unmanned surface vehicle[J]. Journal of Field Robotics, 2009, 26(8): 669-688.
  • 3LIAO Yulei, WAN Lei, ZHUANG Jiayuan. Full state-feedback stabilization of an underactuated unmanned surface vehicle[C]//Proceeding of the 2rid IEEE International Conference on Advanced Computer Control. Shenyang, China, 2010: 70-74.
  • 4Caccia M, Bruzzone G, Bono R. A practical approach to modeling and identification of small autonomous surface craft[J]. IEEE Journal of Oceanic Engineering, 2008, 33(2): 133-145.
  • 5SHEN Wei, GUO Xiaopen, WU Chao. Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm[J]. Knowledge-Based Systems, 2011, 24(3): 378-385.
  • 6ZHANG Meifeng, SHAO Cheng, LI Meijuan, et al. Mining classification rule with artificial fish swarm[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. Dalian, China, 2006:5877-5881.
  • 7WU Huafeng, CHEN Xinqiang, SHI Chaojian, et al. An ACOA-AFSA fusion routing algorithm for underwater wireless sensor network[J]. International Journal of Distributed Sensor Networks, 2012, 2012(2012): 1-9.
  • 8Saeed F. Efficient job scheduling in grid computing with modified artificial fish swarm algorithm[J]. International Journal of Computer Theory and Engineering, 2009, 1(1): 13-18.
  • 9JIANG Mingyan, CHENG Yongming. Simulated annealing artificial fish swarm algorithm[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation. Jinan, China, 2010: 1590-1593.
  • 10Deb K. An efficient constraint handling method for genetic algorithms[J]. Computer Methods in Applied Mechanics and Engineering, 2000, 186(2): 311-338.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部