期刊文献+

一种流形仿射对齐算法

An algorithm for affine alignment of manifolds
下载PDF
导出
摘要 研究了高维数据集中共享隐空间的寻找和对齐问题,提出了半监督的流形仿射对齐算法.未匹配点的局部分布信息被有效地利用起来,以改善在匹配点比例较低情况下的学习效果;扩展的谱回归技术的应用,使得线性对齐也能较好地保持高维数据的局部几何信息.实验表明该算法能够找出高维数据的相关性方向,并将其内部隐空间较好地对齐在一起,映射新点的开销也很小. For the problem of finding and aligning the shared hidden structure of high-dimensional data sets, a semi-supervised algorithm for affine alignment of manifolds was presented. Un-matching points were used to improve the learning effect when the proportion of matching points was small. The extended spectral regression technique was applied, which made it possible for linear aligning algorithm to preserve the local geometry information of high-dimensional data. The experiments showed that the embedded manifolds could be successfully found and aligned when the proportion of matching points was small, and less cost was needed to project a new point.
作者 徐雪 周荷琴
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2009年第9期996-1000,1008,共6页 JUSTC
关键词 流形对齐 半监督学习 仿射变换 谱回归 样本外点映射 manifold alignment semi-supervised learning spectral regression affine transformation out of sample extension
  • 相关文献

参考文献21

  • 1Rowels S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J].Science, 2000,290(5500): 2 323-2 326.
  • 2Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering [C]// Advances in Neural Information Processing Systems 16, Vancouver, Canada: The MIT Press, 2002: 585-591.
  • 3Zhang Z Y,Zha H Y. Principal manifolds and nonlinear dimension reduction via local tangent space alignment [R]. CSE, Penn State Univ, 2002 : CSE-02-019.
  • 4Donoho D L, Grimes C. Hessian eigenmaps: New locally linear embedding techniques for high- dimensional data [J].Proceedings of the National Academy of Sciences,2005,102(21): 7 426- 7 431.
  • 5Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science,2000,290(5500) : 2 319-2 323.
  • 6Lafon S,Lee A B. Diffusion maps and coarse-graining: A unified framework for dimensionality reduction, graph partitioning, and data set parameterization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2006,28(9): 1 393- 1 403.
  • 7van der Maaten L J P, Postma E O, van den Herik H J. Dimensionality reduction.. A comparative review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.
  • 8Hotelling H. Relations between two sets of variates [J]. Biometrika, 1936, 28:312-377.
  • 9Johnson R A, Wichern D W. Applied Multivariate Statistical Analysis [M]. 3rd ed. NJ: Prentice Hall, 1992.
  • 10Hardoon D R, Szedmak S, Shawe-Taylor J. Canonical correlation analysis.. An overview with application to learning methods[J]. Neural Computation, 2004, 16: 2 639 -2 664.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部