期刊文献+

非等密度颗粒气固流化床的微观尺度模拟与分析 被引量:4

Micro-scale simulation and analysis of gas-solid fluidized bed with multi-density distribution of particles
下载PDF
导出
摘要 采用计算流体力学与离散单元法相耦合的CFD-DEM方法对两种表观气速下三维非等密度颗粒流化床内的气固运动进行了数值模拟研究,对比了两种气速下流化床内颗粒的分层和混合现象,发现在非等密度颗粒流化床内,有不同程度的颗粒分层现象存在。当表观气速较低,处于最小密度颗粒的临界流化速度和最大密度颗粒的临界流化速度之间时,颗粒体系出现了较为明显的分层现象,整体上为重颗粒在下、轻颗粒在上的分层结构;当表观气速较高,大于最大密度颗粒的临界流化速度时,分层现象不再明显。采用Lacey混合指数分析了流化床内颗粒之间的混合状况,发现颗粒密度差越小,混合指数越大,越难分离;颗粒密度差越大,则混合指数越小,分离越完全. A three-dimensional multi-density fluidized bed was simulated by using computational fluid dynamics-discrete element method (CFD-DEM) at two superficial gas velocities. The mixing and segregation behavior of particles at two different superficial gas velocities was compared. Results showed that different degree of segregation phenomenon existed in the fluidized bed. The obviously segregation phenomenon that heavy particles moved down and light particles moved up occurred when the superficial gas velocity was low, being larger than the critical fluidization velocity of the lightest particles but smaller than that of the heaviest particles. But the segregation phenomenon was not clear when the superficial gas velocity was higher than the maximum critical fluidization velocity. The mixing and segregation behavior of particles at two different superficial gas velocities was described by Lacey indexes. Results show that particles with smaller density difference have larger mixing index and are more difficult to be segregated, and that with larger density difference have smaller mixing index and can be segregated much more completely.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第9期1703-1708,共6页 Journal of Zhejiang University:Engineering Science
基金 国家"973"重点基础研究发展计划资助项目(2007CB209706) 浙江大学优秀青年教师资助项目
关键词 流化床 离散单元法 计算流体力学 计算颗粒力学 fluidized bed discrete element method (DEM) computational fluid dynamics (CFD) computational granular dynamics
  • 相关文献

参考文献19

  • 1何玉荣,陆慧林,别如山,刘文铁.鼓泡流化床宽筛分颗粒气固两相流动的流体动力学[J].动力工程,2003,23(5):2646-2651. 被引量:6
  • 2吴锦坤,罗坤,胡桂林,樊建人,岑可法.鼓泡流化床流动特性的直接颗粒模拟[J].浙江大学学报(工学版),2007,41(3):504-508. 被引量:7
  • 3TSUJI Y,KAWAGUCHI T,TABAKA T. Discrete particle simulation of two-dimensional fluidized bed [J]. Powder Technology, 1993, 77 ( 1 ) : 79 - 87.
  • 4HOOMANS B P B,KUIPERS J A M,BRIELS W J,et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed:a hard sphere approach [J]. Chemical Engineering Science, 1996, 51(1) :99 - 118.
  • 5XU B H,YU A B. Numerical simulation of the gas-particle flow in a fluidized bed by combining discrete particle method with computational fluid dynamics [J]. Chemical Engineering Science, 1997, 52 ( 16) : 2785 - 2809.
  • 6OUYANG J, LI J. Discrete simulations of heterogeneous structure and dynamic behavior in gas-solid fluidization [J]. Chemical Engineering Science, 1999, 54(22) :5427 - 5440.
  • 7ZHU H P,ZHOU Z Y,YANG R Y,et al. Discrete particle simulation of particulate systems: theoretical developments [J]. Chemical Engineering Science, 2007, 62(13) :3378 - 3396.
  • 8FENG Y Q,XU B H,ZHANG S J,et al. Discrete particle simulation of gas fluidization of particle mixtures [J]. AIChE Journal, 2004, 50(8): 1713 -1728.
  • 9FENG Y Q, YU A B. Micro-dynamic modeling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization [J]. Chemical Engineering Science, 2007, 62(1-2) :256 - 268.
  • 10周浩生,陆继东,钱诗智.宽筛分流化床气固两相流动结构离散颗粒模型[J].燃烧科学与技术,1999,5(3):270-275. 被引量:5

二级参考文献62

  • 1Ding J, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE. J. , 1990(36):523-538.
  • 2Jenkins JT, Mancini F. Kinetic theory for binary mixtures of smooth, nearly elastic spheres[J]. Phys Fluids, 1989(31) :2050- 2057.
  • 3Gidaspow D, Huilin L. Manger E. Kinetic theory of multiphase flow and fluidization:validation and extension to binries[J]. XIXth Inter. Congress of Theoretical and Applied Mechanics, 1996, Japan.
  • 4Mathiesen V, Solberg T, Hjertager BH. An experimental and computation study of muhiphase flow behavior in a circulation fluidized bed[J].Int J of Muhiphase Flow, 2000(26)387-419.
  • 5Huilin L. Gidaspow D, Manger E. Kinetic theory of fluidized binary granular mixtures[J]. Physical Review E, 2001 (64) :61301-61319.
  • 6Mansoori GA, Carnahan NF, Starling KE, Leland TW. Equilibrium thermodynamic properties of the mixture of hard spheres[J]. J Chem Phys,1971(54):1523-1525.
  • 7Gidaspow D, Multiphase flow and fluidization:Continuum and kinetic theory description[J].Academic Press, San Diego, 1994.
  • 8Wen CY, Yu YH. Medchanics of fluidization[J]. Chem Eng Prog Symp Ser,1966(62):100-113.
  • 9Yuan Zhulin,Developments in Chemical Engineering & Mineral Processing,2000年,8卷,3/4期,207页
  • 10MATHIESEN V,SOLBERG T,HJERTAGER B H.An experimental and computations:study of multiphase flow behavior in a circulating fluidized bed[J].Int J of Multiphase Flow,2000,26:387-419.

共引文献81

同被引文献57

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部