期刊文献+

恢复蛋白Recoverin正则模式分析的理论研究 被引量:1

Theoretical Investigation of Recoverin′s Normal Mode Analysis
下载PDF
导出
摘要 采用旋转平移块方法对Ca2+/豆蔻酰基开关进行了正则模式分析(NMA).研究结果表明,恢复蛋白(Recoverin)的T态的N-末端与C-末端易于发生刚体逆向旋转,一旦结合Ca2+,很容易发生构象变化,形成具有双向构象转变特征的I态.I态是一个中间结构,既可以发生构象回转到T态,又可以继续相对旋转到R态,使豆蔻酰基完全暴露,从而行使其信号传导生物功能.从低频振动模式分析可以看出,恢复蛋白具有构象转变这一本质属性. Recoverin is an important branch of neuronal calcium sensor. It had been shown recently that half of the known protein movements can be modelled by using at most two low-frequency normal modes. Hence, we investigated their normal modes by rotational translational block method in order to give a deep insight into the nature of the Ca^2+-myristoyl switch conformational transition. The normal mode perturbed models of recoverin T-state revealed that the overall motion of the first lowest mode could be described approximately as a converse-rigid-body-swivel around the inter-domain linker. While in the one Ca^2+ -bound structure, in addition to the converse-rigid-body-swivel motion, an exposure of the myristoyl group is also detected, which was pro- posed as bidirectional conformational transition across the domain interface and facilitates the allosteric transition in signal-transduction processes. These observations indicate that reeoverin is intrinsically dynamic.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2009年第10期2055-2058,共4页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:20773048,200702019,20070421075) 山东省博士后创新基金 中国博士后科学基金资助
关键词 变构过程 信号传导 正则模式分析 低频振动 Allosteric process Signal transduction Normal mode analysis Low frequency vibration
  • 相关文献

参考文献16

  • 1Burgoyne R. D.. Nature Rev. [J] , 2007, 8(3) : 182-193.
  • 2Rizzuto R. , Pozzan T.. Physiol. Rev. [J] , 2006, 86(1) : 369-408.
  • 3McKinseyT. A., Kass D. A.. Nat. Rev. Drug. Discov.[J], 2007, 6(8):617-635.
  • 4Ames J. B. , Levay K. , Wingard J. N. , et al.. J. Biol. Chem. [J] , 2006, 281(48) : 37237-37245.
  • 5Dizhoor A. M., Chen C. K., Olshevskaya E., et al., Science[J], 1993, 259(5096): 829-832.
  • 6Tanaka T. , Ames J. B. , Harvey T. S. , et al.. Nature[J] , 1995, 376(6539) : 444-447.
  • 7Ames J. B., Ishima R. , Tanaka T. , et al. Nature[J], 1997, 389(6647) : 198-202.
  • 8Ames J. B. , Hamasaki N. , Molchanova T.. Biochemistry[J] , 2002, 41(18) : 5776-5787.
  • 9Zozulya S. , Stryer L.. Proc. Natl. Acad. Sci. USA[J] , 1992, 89(23) : 11569-11573.
  • 10FlahertyK. M., ZozulyaS., StryerL., etal.. Cell[J], 1993, 75(4):709-716.

同被引文献35

  • 1Jones P. M. , George A. M. , Cell Mol. Life Sci. , 2004, 61(6): 682-699.
  • 2Rees D. C. , Johnson E. , Lewinson O. , Nat. Rev. Mol. Cell Biol. , 2009, 10(3): 218-227.
  • 3Locher K. P., Phil. Trans. R. Soc. B., 2009, 364(1514): 239-245.
  • 4Oldham M. L. , Khare D. , Quiocho F. A. , Davidson A. L. , Chen J. , Nature, 2007, 450(7169): 515-521.
  • 5Oldham M. L. , Chen J. , Science, 2011, 332(6034): 1202-1205.
  • 6Oldham M. L. ,Chen J. , Proc. Natl. Acad. Sci. USA, 2011, 108(37): 15152-15156.
  • 7Hegediis T. , Gyimesi G. , G6sp6r M. E. , Szalay K. Z. , Gangal R. , Csermely P. , Curl'. Pharm. Des. , 2013, 19, 4155-4172.
  • 8Riordan J. R. , Rommens J. M. , Kerem B. , Alon N. , Rozmahel R. , Grzelczak Z. , Zielenski J. , Lok S. , Plavsic N. , Chou J. L. , Sc/ee, 1989, 245(4922): 1066-1073.
  • 9Mosser J. , Douar A. M. , Sarde C. O. , Kioschis P. , Feil R. , Moser H. , Poustka A. M. , Mandel J. L. , Aubourg P. , Nature, 1993, 361 (6414): 726-730.
  • 10Szak6cs G. , V6radi A. , 0zvegy-Laczka C. , Sarkadi B. , Drug Discov. Today, 2008, 13(9/10): 379-393.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部