期刊文献+

还原氧化石墨烯横向尺寸分布影响因素初探 被引量:9

Preliminary study of the influences on lateral-dimension distribution of reduced graphene oxide nanosheets
下载PDF
导出
摘要 化学还原剥离氧化石墨法制备的还原氧化石墨烯具有诸多优异性能,但所得还原氧化石墨烯横向尺度差异较大。利用化学还原法制备了还原氧化石墨烯,基于还原氧化石墨烯的AFM观测结果,初步统计分析了静置、磁力搅拌、离心和超声处理及它们的次序对还原氧化石墨烯横向尺寸分布的影响,结果表明后述3个步骤及次序是影响斑点状(横向尺寸<100nm×100nm)和树叶状(横向尺寸>500nm×500nm)还原氧化石墨烯横向尺寸分布的主要因素。 The reduce graphene oxide nanosheets, produced by chemical reduction of exfoliated graphite oxide, possess distinguished properties; however, their lateral-dimensions vary greatly, limiting their applications. Preliminary statistical analysis, based AFM images of reduced graphene oxide nanosheets, was performed for investigating the effects of standing-treatment, magnetic stirring, centrifugation, ultrasonication and their sequences to their lateral-dimensions distribution. The result shows that magnetic stirring, ultrasonication and centrifugation as well as their sequences mainly contribute to the distribution of dot-like reduced graphene oxide nanosheets (with lateral-dimensions less than 100nm×100nm) and leaf-like reduced graphene oxide nanosheets (with lateral-dimensions less than 500nm×500nm).
作者 张天友 张东
出处 《功能材料》 EI CAS CSCD 北大核心 2009年第10期1695-1698,共4页 Journal of Functional Materials
基金 国家高技术研究发展计划(863计划)资助项目(2009AA05Z419) 教育部新世纪优秀人才支持计划资助项目(NCET-07-0626) 上海市"科技创新行动计划"国际合作资助项目(08160706900)
关键词 化学法 还原氧化石墨烯 磁力搅拌 超声处理 离心处理 chemical method reduced graphene oxide nanosheets magnetic stirring ultrasonication centrifugation
  • 相关文献

参考文献16

  • 1Geim A K,Novoselov K S. [J]. Nat Mater, 2007,6:183- 191.
  • 2Jang B Z, Zhamu A. [J]. J Mater Sci, 2008, 43: 5092- 5101.
  • 3Novoselov K S, Geim A K, Morozov S V, et al.[J]. Science, 2004,306 : 666-669.
  • 4Berger C, Song Z, Li X, et al. [J]. Science, 2006,312:1191-1196.
  • 5Stankovich S, Dikin D A, Piner R D, et al.[J]. Carbon, 2007,45 : 1558-1565.
  • 6Li D, Muller M B, Gilje S, et al. [J]. Nat Nanotechnol, 2008,3 : 101-105.
  • 7Stankovich S, Piner R D, Nguyen S T, et al. [J]. Carbon, 2006,44 : 3342-3347.
  • 8Eda G, Fanchini G,Chhowalla M. [J]. Nat Nanotechnol, 2008,3:270-274.
  • 9Gomez-Navarro C, Weitz R T, Bittner A M, et al. [J]. Nano Lett, 2007,7: 3499-3503.
  • 10Gilje S, Han S, Wang M, et al. [J]. Nano Lett, 2007,7:3394-3398.

同被引文献75

  • 1史永胜,李雪红,宁青菊.石墨烯的制备及研究现状[J].电子元件与材料,2010,29(8):70-73. 被引量:15
  • 2Allen M J, Tung V C, Kaner R B. Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110( 1 ): 132-145.
  • 3Geim A K, Novoselov K S. The rise of graphene[J]. Nature Ma- terials,2007 (6) : 183-191.
  • 4Novoselov K S, Geim A K, Morozov S V, et al. Electric field ef- fect in atomically thin carbon films [J]. Science, 2004, 306 (5696) : 666-669.
  • 5Meyer J C, Geim A K, Katsnelson M I, et al. The structure ofsuspended graphene sheets [ J ]. Nature, 2007,446 : 60-63.
  • 6Avouris P, Chen Z, Perebeinos V. Carbon-based electronics [ J ]. Nat Nanotechnol, 2007,2 : 605-615.
  • 7Zhang Y B, Tan Y W, Stormer H L, et al. Experimental obser- vation of the quantum H all effect and Berry' s phase in gra- phene [ J ]. Nature, 2005,438 : 201-204.
  • 8Balandin A A, Ghosh S, Bao W, et al. Superior thermal con- ductivity of single-layer graphene [ J ]. Nano Lett, 2008,8 (3) : 902-907.
  • 9Chae H K, Siberio-Prez D Y, Kim J, et al. A route to high sur- face area, porosity and inclusion of large molecules in crystals [ J ]. Nature, 2004,427 : 523-527.
  • 10Nomura K, MacDonald A. Quantum hall ferromagnetism in gra- phene [ J ]. Phys Rev Lett, 2006,96 (25) : 256602-1-4.

引证文献9

二级引证文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部