期刊文献+

冻土活动层相变温度场Chebyshev拟谱分析 被引量:2

Chebyshev pseudo-spectral method for the calculation of temperature in active layer of permafrost with phase-change
下载PDF
导出
摘要 在冻土相变温度热传导机理基础上,应用冻土计算中水热输运过程成熟的通用物理模型,提出冻土活动层温度的一种全新的数值分析方法-谱方法。应用Chebyshev多项式作为基函数将温度解展开,在研究域(或单元)内采用伪谱Chebyshev逼近的谱方法。为了与谱方法的高精度相配合及提高时程积分解的稳定性,本文应用四阶Runger-Kutta法进行时程积分,变物性温度泛函-热导系数、热容量等考虑效应滞后的处理方法。本文提出冻土非线性问题数值计算拟谱分析的理论构架,其计算方法在冻土工程应用中具有一定的理论导向作用和较大的实用价值。 On the basis of the modern mechanism of heat conduction with phase-change for frozen-soil and the well-grounded physical model of heat-transfer coupled with moisture using in the numerical calculation of frozen-soil, an unique numerical formulation, spectral method, is applied in the calculation of temperature field of frozen-soil active layer for the first time. Unknown active layer temperature solution is asymptotically expanded by using Chebyshev polynomials as its base functions and the Chebyshev expansion is interpolated at collocation points, so called "pseudo-spectral" is applied to solve nonlinear differential heat-transfer equations for an unknown temperature function. In consistent with the high precision of spectral method, it is appropriate to introduce the fourth order Runger-Kutta time-integration method in the evolution equation after spatial discretized. A special method, coefficients hysteresis, is used to treat with non-constant conductivity and specific heat coefficients in the evolution equation. The proposed numerical formulation keeps the common predominance, excellent numerical precision, of spectral method, which results are showed in examples.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2009年第5期703-709,共7页 Chinese Journal of Computational Mechanics
基金 中国科学院创新工程重大(KZCX1-SW-04)资助项目
关键词 冻土活动层 相变温度场 Chebyshev拟谱分析 变物性方程 active-layer permafrost temperature phase-change Chebyshev' pseudo-spectral nonconstant coefficients
  • 相关文献

参考文献18

  • 1GUYMON G L, HROMADKA T T, BERY R L. Two-dimensional model of coupled heat and moisture transport in frost-heaving soils[J]. Energy Resource Technology Trans of ASME, 1984,106:336-343.
  • 2MIYATA Y. A frost heave mechanism model based on energy equilibrium [J]. 5th Int Syrup on Ground Freezing, 1988:91-98.
  • 3FILLO J, GEER J. Hybird perturbation Galerkin technique for nonlinear heat conduction[J]. Numerical Heat Transfer, Part B(29), 1996:661-73.
  • 4FRENOND M. Supercoling: A macroscopic predicative theory[J]. Ground Freezing, 1994,94 : 79-84.
  • 5OUYANG T, TAMMA K K. Finite element simulation involving simultaneous multiple interface fronts in phase change problems [J]. Int J Heat Mass Transfer, 1996,39(8) :1711-1718.
  • 6NATERER G F, SCHNIDE G E. Pheses model for binary-constituent solid-liquid phase transition [J]. Numerical Heat Transfer, 1995, Part B(28) : 111- 126.
  • 7李洪升,刘增利,梁承姬.冻土水热力耦合作用的数学模型及数值模拟[J].力学学报,2001,33(5):621-629. 被引量:58
  • 8李南生,孙焕纯,柴山.渠系基础冻结过程水热耦合问题数值分析[J].水利学报,1997(3):43-48. 被引量:9
  • 9CANUTO C, QUARTERONI A. Approximation results for orthogonal polynomials in Sobolev spaces [J]. Math Compu, 1982,38:67-86.
  • 10MADAY Y, QUARTERONI A. Legendre and Chebyshev spectral approximations of Burger's equation [J]. Numer Math , 1981,37:321-332.

二级参考文献28

  • 1安维东.冻土的温度、水分应力及其相互作用[M].兰州:兰州大学出版社,1989.183-211.
  • 2安维东 陈肖柏 等.渠道冻结时热质迁移的数值模拟[J].冰川冻土,1987,9(1):35-46.
  • 3徐敩祖 王家澄 张立新.冻土物理学[M].北京: 科学出版社,2001.77-91.
  • 4团体著者,冻土的温度水分应力及其相互作用,1990年
  • 5丁德文,科学通报,1978年
  • 6Xu Xiaozu,Me Chanics of Frost Heave and Salt Expansion of Soils,1999年,67页
  • 7徐学祖,冻土中水分迁移的实验研究,1991年,29页
  • 8Shen Mu,Cold Region Sci Technol,1990年,14卷,237页
  • 9安维东,冻土的温度、水分应力及其相互作用,1989年,183页
  • 10安维东,冰川冻土,1987年,9卷,1期,35页

共引文献68

同被引文献36

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部