期刊文献+

基于文化算法的模糊聚类分析 被引量:2

Fuzzy Clustering Analysis Based on Cultural Algorithms
下载PDF
导出
摘要 分析了模糊c均值(Fuzzy C Mean)聚类算法存在的不足,提出了基于文化算法的新型聚类算法.文化算法具有双层机构的特性,能从进化种群空间中获得求解问题的知识(即信仰)来指导搜索过程,从而具有较好的全局寻优性能.仿真实验表明,基于文化算法的聚类分析方法能在一定程度上避免FCM算法对初始值敏感和容易陷入局部最优解的缺陷,具有较好的聚类结果,且需要较少的计算量. A new clustering algorithms based on culture algorithms is proposed after analyzing the disadvantages of the Fuzzy C Mean (FCM). Cultural algorithms has the feature of dual inheritance systems. It can obtain the knowledge (belief) of solved questions from Population Space to guide the searching process, so it has greater searching capability globally. By comparison results, a new clustering algorithms based on culture algorithms, to a certain extent, can avoid the sensitivity of initial value and the weakness of easily got struck in local optimum. Experiments show that new algorithms has highly clustering results and a relatively low compulational cost.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第10期1-4,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(50674086)
关键词 文化算法 双层机构 模糊C均值 信仰 culture algorithms dual inheritance systems Fuzzy C Mean belief
  • 相关文献

参考文献8

  • 1Zhengui Xue, Yinan Guo. Improved cultural algorithm based on genetic algorithm[ C]//Integration Technology, 2007, IEEE International Conference. Guarg zhou, China, 2007:117 - 122.
  • 2Dunn J C. Well - separated clusters and the optimal fuzzy partition[J]. Cybernet, 1974,4(1) :95 - 104.
  • 3Robert R G. An introduction to cultural algorithms[C]// Proceedings of the 3th Annual Conference Evolution Programming. Singapore: World Scientific Publishing, 1994: 131 - 139.
  • 4Fogel D B. An introduction to simulated evolutionary optimization[J ]. IEEE transactions on neuralnetworks, 1994, 5(1) :3- 14.
  • 5张东民,廖文和.基于实值编码遗传算法的起重机伸缩臂结构优化[J].南京航空航天大学学报,2004,36(2):185-189. 被引量:8
  • 6Ricardo Landa Becerra, Carlcos A, Coello Coello. A cultural algorithm with differential evolution to solve constrained optimization problems [ C] // MEXLLO. 2004 ( 11 ) : 881 - 890.
  • 7Reynolds R G, Chung C. A self- adaptive approach to representation shifts in cultural algorithms[ C]//Proceedings of IEEE International Conference on Evolutionary Computation, Nagoya, Japan, 1996:94 - 99.
  • 8黄海燕,顾幸生,刘漫丹.求解约束优化问题的文化算法研究[J].自动化学报,2007,33(10):1115-1120. 被引量:40

二级参考文献24

  • 1贺益君,陈德钊.连续约束蚁群优化算法的构建及其在丁烯烷化过程中的应用[J].化工学报,2005,56(9):1708-1713. 被引量:12
  • 2胡铁华,马成林,曹金海.汽车起重机吊臂优化设计及性能分析[J].农业工程学报,1996,12(3):112-116. 被引量:5
  • 3Deb K, Goyal M. Optimization engineering designs using a combined genetic search[A]. Proc of the Seventh Int Conf on Genetic Algorithms[C].1997.521~528.
  • 4Herrera F. Tackling real-coded genetic algorithms: operators and tools for behavioral analysis[J]. Artificial Intelligence Review,1998,(12):265~319.
  • 5Michalewicz Z. Genetic algorithms+data structures=evolution programs[M]. New York:Springer-Verlag, 1992.
  • 6Wright A. Genetic algorithms for real parameter op-timization[A]. Foundations of Genetic Algorithms, First Workshop on the Foundations of Genetic Algorithms and Classifier Systems, G.J.E. Rawlin(Ed.) Morgan Kaufmann[C]. Los Altos, CA, 1990.205~218.
  • 7Robert R G.An introduction to cultural algorithms.In:Proceedings of the 3rd Annual Conference Evolution Programming.Singapore:World Scientific Publishing,1994.131-136
  • 8Renfrew A C.Dynamic Modeling in Archaeology:What,When,and Where? Dynamical Modeling and the Study of Chang in Archaeology.Edinburgh Scotland:Edinburgh University Press,1994
  • 9Trung T N,Xin Y.Hybridizing cultural algorithms and local search.Lecture Notes in Comptuer Science.Springer,2006,4224:586-594
  • 10Reynolds R G,Peng B.Knowledge learning and social swarms in culture algorithms.The Journal of Mathematic Sociology,2005,29(2):115-132

共引文献46

同被引文献9

  • 1涂序彦.广义智能学[C]//中国人工智能学会第十一届全国人工智能学术大会论文集.北京:北京邮电大学出版社,2005.TU Xuyan.Generalized intelligenics[C]//Proceedings of the 11th-National Conference on Artificial Intelligence of CAAI.Beijing:Beijing University Posts & Telecommunicatins Press,2005.
  • 2Erich Gamma,Richard Helmet,Ralph Johnson,John Vlissides.设计模式--可复用面向对象软件的基础[M].李英军,马晓星,蔡敏,刘建中,译.北京:机械工业出版社,2008:390-392.
  • 3John H. Holland,Adaption in natural and artificial systems[M],Englewood Cliffs,The University of Michigan Press,1975,66–72.
  • 4Kennedy J,Ebethart R.C.Particle swarm optimization[C]//Proceeding of IEEE International Conference on NeuralNetworks,1995:1942-1948.
  • 5Back T,Schwefel H-P.An overview of evolutionary algo.rithms for parameter optimization[J].Evolutionary computa.tion,1993,1:1-24.
  • 6Hans-Georg,Beyer and Hans-Paul Schwefel,EvolutionStrategies:A comprehensive introduction[J], Natural Com.puting,2002,1:18-19.
  • 7R.G. Reynolds.On modeling the evolution of hunter-gather.er decision-making systems[J],Geograph-ical Analysis,1978,10(1):31-46.
  • 8郭一楠,王辉.文化算法研究综述[J].计算机工程与应用,2009,45(9):41-46. 被引量:28
  • 9张涤,杨燕,唐瑞雪.基于文化算法的混合聚类方法[J].计算机工程与应用,2009,45(4):159-161. 被引量:4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部