期刊文献+

基于区域分割与相关反馈的高效图像检索算法

Efficient Image Retrieval Algorithm Based on Region Segmentation and Relevance Feedback
下载PDF
导出
摘要 为了提高图像标注与检索的性能,提出了一种基于区域分割与相关反馈的图像标注与检索算法.该算法利用视觉特征与标注信息的相关性,采用基于区域的视觉特征对每幅图像采用聚类方法获得其一组视觉相似图像.通过计算与其距离最近的前三个分类的相似度,然后对这些关键字概率向量进行整合,获得最适合该图像的关键字概率向量,对图像进行标注.利用用户的反馈信息,修正查询关键词与每个分类之间的关系,进一步提高图像检索的准确性.实验结果表明,提出的算法具有更高的查准率与查全率. To improve the performance of image annotation and retrieval, an image annotation and retrieval algorithm is proposed based on region segrnenting and relevance feedback. The proposed algorithm adopts the relevance of visual characters and annotation information, and obtains a group of similar photos by clustering based on visual characters of regions. Then it calculates the similarities between the region and the nearest three classes, and merges the keyword probability vector (KPV) to get the most appropriate KPV. The proposed algorithm also adopts the user's feedback information to adjust the weights between query words and each category to improve accuracy of image retrieval. Simulation results prove that the proposed algorithm greatly improves precision and recall of image retrieval.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第10期57-60,共4页 Microelectronics & Computer
基金 国家自然科学基金项目(60731147)
关键词 区域分割 图像标注 图像检索 相关反馈 region segmentation image annotation image retrieval relevance feedback
  • 相关文献

参考文献7

  • 1Yao J, Zhang Z, Antani Sameer, et al. Automatic medical image annotation and retrieval [ J ]. Neurocomputing, 2008, 71(10/12) : 2012 - 2022.
  • 2Jiang W, Er G, Dai Q, et al. Hidden annotation for image retrieval with long- term relevance feedback learning[J]. Pattern Recognition, 2005, 38(11) : 2007 - 2021.
  • 3Chen Y Q, Zhou X S, Huang T S. One-class SVM for learning in image retrieval[C]//Proceedings of Internation- al Conference on Image Processing 2001. Thessaloniki, IEEE press, 2001 : 34 - 37.
  • 4Wang J Z, Geman D, Luo J, et al. Real - world image annotation and retrieval: an introduction to the special section [J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(11): 1873- 1876.
  • 5Duygulu P, Bamard K, De F N, et al. Object recognition as machine translation: learning a lexicon for a fixed image vocabulary[ C]//Proceedings of Seventh European Conference on Computer Vision, Copenhagen Denmark. Berlin: Springer, 2002:97- 112.
  • 6Jeon J, Lavemko V, Manmatha V. Automatic image annotation and retrieval using cross-media relevanoe models[C]// of the 26th annual international ACM SIGIR conference on Research and development in information retrieval. Toronto, Canada: ACM press, 2003: 119-126.
  • 7Bamard K, Forsyth D. Learning the semantics of words and pictures [ C] //Proceedings of International Conference on Computer Vision. Vancouver: IEEE press, 2001:408 -415.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部