期刊文献+

多分类器融合技术在自动作文评分中的应用 被引量:3

The Application of Classifier Combining in Automated Essay Scoring
下载PDF
导出
摘要 从作文的内容和语言学两个方面抽取了作文中相关的特征,并利用多种分类器(贝叶斯、K近邻和支持向量机)根据各方面的特征实现了对作文的分类(评分).最后利用多分类器融合技术对多个分类器进行了融合处理.通过实验分析,利用文本分类的方法对作文进行评分是完全可行的,在采用融合技术以后的评分性能有了较大的提高. We aim to abstract related features from an essay by analyzing its content and structures. Meanwhile, classifiers including Bayes, KNN and SVM are adopted to realize better classification of essays (scoring) based on their features from various aspects. The multi-combination technology is also used in combining different classifiers. Through experimental analysis, it is indicated that scoring for essays is highly feasible via text-classifying method, and a higher performance is obtained by adopting multi-classifiers technology than previously single-classifier one.
出处 《微电子学与计算机》 CSCD 北大核心 2009年第10期69-73,共5页 Microelectronics & Computer
基金 江苏省现代企业信息化应用支撑软件工程技术研究开发中心项目(SX200907)
关键词 自动作文评分 特征提取 文本分类 多分类器融合 automated essay scoring feature selection text classification classifier combining
  • 相关文献

参考文献5

  • 1Sherrnis M D, Burstein J. Automated essay scoring: a cross - disciplinary perspective [ M]. Mahwah, NJ: Lawrence Erlbaum Associates, 2003.
  • 2Yiming Yang, Jan O, Pedersen. A comparative study on feature selection in text categorization [ C ]//Proceedings of the Fourteenth International Conference on Machine Learning. USA: Carnegie Mellon University, 1997, 8 (12) : 412 - 420.
  • 3Sebastiani F. A tutorial on automated text categorization [C]//Proc. Of Argentinian Symposium Artificial Intelligence. Buenos Aires, 1999:7-35.
  • 4Richard O, Duda, Peter E Hart, David G Stork. Pattern classification[M]. 2nd ed. Beijing: China Machine Press, 2004.
  • 5唐春生,金以慧.基于全信息矩阵的多分类器集成方法[J].软件学报,2003,14(6):1103-1109. 被引量:18

二级参考文献2

共引文献17

同被引文献47

  • 1史晶蕊,郑玉明,韩希.人工神经网络在文本分类中的应用[J].计算机应用研究,2005,22(10):213-216. 被引量:10
  • 2何玉,冯剑琳,王元珍.基于最大关联规则的文本分类[J].计算机科学,2006,33(11):143-145. 被引量:6
  • 3Burstein, J. The E-rater scoring engine : Automated essay scoring with natural language processing[ A]. Shermis, M. D. , Burstein, J. Automated essay scoring: a cross disciplinary perspective. Mahwah, N J: Lawrence Erlbaum Associates,2003.
  • 4Cheville J. Automated scoring technologies and the rising influence of error[ J]. English Journal,2004.
  • 5Chung, G., O' Neil, H. Jr. Methodological approaches to online scoring of essays [ R ]. Los Angeles, CA : University of California, Center for the Study of Evaluation, 1997.
  • 6Elliot, S. IntelliMetfic: from here to validity[A]. Shermis, M. D. , Burstein, J. Automated essay scoring: a cross disciplinary perspective. Mahwah, NJ: Lawrence Erlbaum Associates,2003.
  • 7Foltz, P. , W. , Kintsch, W. Landauer, T. K. The measurement of textual coherence with Latent Semantic Analysis[ J]. Discourse Processes, 1998.
  • 8Hsu, C. Lin, C. A comparison on methods for multi-class support vector machines [ J ]. IEEE Transactions on Neural Networks ,2002.
  • 9Landauer, T. K. , Dumais, S. T. A solution to Plato's problem: the latent semantic analysis theory of the Acquisition, induction, and representation of knowledge [ J ]. Psychological Review, 1997.
  • 10Landauer, T. K. , Laham, D. , Foltz, P. W. Automated scoring and annotation of essays with the Intelligent Essay Assessor[ A]. Shermis, M. D. , Burstein, J. Automated Essay Scoring: A Cross Disciplinary Perspective[ C]. Lawrence Erlbaum Associates, Mahwah, N J: Lawrence Erlbaum Associates,2003.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部