期刊文献+

基于LMI的非线性模糊脉冲奇异摄动系统的鲁棒模糊控制 被引量:3

Robust Fuzzy Control of Nonlinear Fuzzy Impulsive Singularly Perturbed Systems Based on LMI
下载PDF
导出
摘要 通过推广一般T-S模糊模型定义了一类非线性模糊脉冲奇异摄动系统,基于线性矩阵不等式(LMI)方法提出一种鲁棒模糊控制新方案,采用并行分布补偿(PDC)的基本思想设计状态反馈控制器,并利用Lyapunov理论证明闭环系统全局指数稳定.最后基于LMI方法,将鲁棒模糊控制器的设计问题转化为线性矩阵不等式问题(LMIP).仿真结果表明了该方法的有效性. This paper defines a class of nonlinear fuzzy impulsive singularly perturbed systems by extending the ordinary T - S fuzzy model. A new scheme of robust fuzzy control via linear matrix inequality (LMI) technique is proposed. The concept of parallel distributed compensation (PDC) is employed to design the state feedback controller..By Lyapunov method, the resulting closed - loop system is shown to be globally exponential stable. By LMI technique, the problem of designing the robust fuzzy controller is translated into linear matrix inequality problem (LMIP). Simulation shows the effectiveness of the proposed controller design methodology.
作者 周彩根
出处 《微电子学与计算机》 CSCD 北大核心 2009年第10期165-169,共5页 Microelectronics & Computer
基金 江苏省高校自然科学基金项目(08KJD510008) 盐城师范学院自然科学基金项目(07YCKL065)
关键词 鲁棒控制 模糊脉冲奇异摄动系统 T-S模糊模型 线性矩阵不等式 robust control fuzzy impulsive singular perturbed systems T- S fuzzy model linear matrix inequality
  • 相关文献

参考文献7

  • 1Guan Z H, Chen G, Yu X H, et al. Robust decentralized stabilization for large - scale time - delay uncertain impulsive dynamical systems [J]. Automatica, 2002, 38(12) :2075 - 2084.
  • 2Liu B, Chen G, Teo L K, et al. Robust global exponential synchronization of general lur'e chaotic systems subject to impulsive disturbances and time delays[J]. Chaos, Solitons and Fractals, 2005, 23(5): 1629-1641.
  • 3Wang Y W, Guan Z H, Wang H O. Impulsive synchronization for takagisngeno fuzzy model and its application to continuous chaotic system[J]. Physics Letters A, 2005, 339(4) :325 - 332.
  • 4Jiang H B, Yu J J, Zhou C G. Robust global exponential stabilization of nonlinear impulsive fuzzy systems via LMI technique [C]//The First International Workshop on Intelligent Systems and Intelligent Computing (IWISIC06). Beijing, 2006(10) : 1937 - 1941.
  • 5姜海波,周彩根,于建江.基于LMI方法的一类非线性模糊脉冲系统的鲁棒模糊控制[J].模糊系统与数学,2008,22(3):136-143. 被引量:3
  • 6Jiang H B, Yu J J, Zhou C G. Robust fuzzy control of nonlinear fuzzy impulsive systems with time - varying delay [J]. IET control theory and applications, 2008,8(2) :654 - 661.
  • 7刘华平,孙富春,何克忠,孙增圻.模糊奇异摄动系统及其稳定性分析与综合(英文)[J].自动化学报,2003,29(4):494-500. 被引量:15

二级参考文献19

  • 1Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control[J]. IEEE Trans. on Systems ,Man and Cybernetics, 1985,15(1) : 16-132.
  • 2Tanaka K, et al. Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs[J].IEEE Trans. on Fuzzy Systems, 1998,6 (2) : 250-265.
  • 3Taniguchi T, Tanaka K, Wang H O. Fuzzy descriptor systems and nonlinear model following control[J].IEEE Trans. on Fuzzy Systems, 2000,8 (4):442-452.
  • 4Li T S, Li K J. Stabilization of singularly perturbed fuzzy systems[J].IEEE Trans on Fuzzy Systems,2004,12(5): 579-595.
  • 5Liu H P, Sun F C, Sun Z Q. Stability analysis and synthesis of fuzzy singularly perturbed systems[J]. IEEE Trans. on Fuzzy Systems,2005,13(2):273-284.
  • 6Wang Z, Ho D, Liu X. A note on the robust stability of uncertain stochastic fuzzy systems with time-delays[J]. IEEE Trans on Systems, Man, and Cybernetics-Part A:Systems and Humans, 2004,34 (4):570 - 576.
  • 7Lakshmikantham V, Mohapatra R N. Theory of fuzzy differential equations and inclusions[M].London:Taylor & Francis, 2003 : 104 - 109.
  • 8Guo M, Xue X, Li R. Impulsive functional differential inclusions and fuzzy population models[J].Fuzzy Sets and Systems, 2003,138 (3) : 601 - 615.
  • 9Guan Z H, et al. Robust decentralized stabilization for large-scale time-delay uncertain impulsive dynamical systems[J].Automatica,2002,38(12):2075-2084.
  • 10Shen J,Jing Z. Stability analysis for systems with impulsive effects[J]. International Journal of Theoretical Physics, 2006,45 (9) : 1715- 1729.

共引文献16

同被引文献33

  • 1刘华平,孙富春,何克忠,孙增圻.模糊奇异摄动系统及其稳定性分析与综合(英文)[J].自动化学报,2003,29(4):494-500. 被引量:15
  • 2张红涛,刘新芝.关于一类脉冲切换系统的鲁棒H_∞控制[J].控制理论与应用,2004,21(2):261-266. 被引量:23
  • 3许弘雷,刘新芝.一类受扰动脉冲切换系统鲁棒指数镇定[J].自动化技术与应用,2004,23(11):14-16. 被引量:7
  • 4Yang T.Impulsive control theory[M].Berlin:Springer,2001:1-15.
  • 5Guan Z H,et al.Robust decentralized stabilization for large-scale time-delay uncertain impulsive dynamical systems[J].Automatica,2002,38(12):2075-2084.
  • 6Shen J,Jing Z.Stability analysis for systems with impulsive effects[J].International Journal of Theoretical Physics,2006,45(9):1715-1729.
  • 7Liu B,et al.Robust global exponential synchronization of general Lur'e chaotic systems subject to impulsive disturbances and time delays[J].Chaos,Solitons and Fractals,2005,23(5):1629-1641.
  • 8Chen D L,Sun J T,Huang C S.Impulsive control and synchronization of general chaotic system[J].Chaos,Solitons and Fractals,2006,28(1):213-218.
  • 9Wang Y W,Guan Z H,Wang H O.Impulsive synchronization for Takagi-Sugeno fuzzy model and its application to continuous chaotic system[J].Physics Letters A,2005,339(4):325-332.
  • 10Takagi T,Sugeno M.Fuzzy identification of systems and its application to modeling and control[J].IEEE Trans on Systems,Man and Cybernetics,1985,15(1):116-132.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部