期刊文献+

二维剪切液膜流表面波的线性稳定性特征 被引量:1

Characteristics of linear stability of two-dimensional sheared interfacial waves of falling liquid films
下载PDF
导出
摘要 当气液界面存在气流剪切作用时,将在不同程度上影响液膜流动的水动力学特征和流动稳定性。基于层流剪切液膜流动的稳态解,分析了切应力对液膜流动状态的影响。采用积分法,建立了沿倾斜壁面下降的二维剪切液膜流表面波扰动演化方程,模型中包含界面切应力、雷诺数、波数和倾角等参数的影响。研究表明:行波和惯性波的波速受均雷诺数和切应力的影响;同向切应力为不稳定性因素,逆向切应力的稳定性影响与雷诺数有关;同向切应力使临界雷诺数减小,逆向切应力使其增大,切应力对临界雷诺数的影响在不同倾角下也有所不同。 The flow dynamics and stability of falling films under effect of a gas flow are obviously influenced by the shear stress at the interfaces. The solution of base state for the sheared film was obtained and the influence of shear on flow regime was investigated in present paper. The evolution equation of the two- dimensional waves on liquid films was established with the integral approach. The effect of shear stress, Reynolds number, wave number and inclined angle were included in present model. Investigation shows that the wave celerity of traveling waves and inertial waves are related with Reynolds number and interfacial shear. The film flow tends to be unstable under the cocurrent shear, and the effect of countercurrent shear on stability is notably different under Re. The critical Reynolds number decreases under the corcurrent shear and increases under the countercurrent shear, and the effect of shear on the critical Reynolds number is also related with inclined angle.
出处 《华北电力大学学报(自然科学版)》 CAS 北大核心 2009年第5期41-45,49,共6页 Journal of North China Electric Power University:Natural Science Edition
基金 高等学校博士学科点专项科研基金项目(20040079004)
关键词 波动液膜 切应力 扰动增长率 线性稳定性 wavy films shear stress perturbation growth rate linear stability
  • 相关文献

参考文献9

  • 1Sheintuch M, Dukler A E. Phase plane and bifurcation analysis of thin wavy films under shear [ J ]. AIChE, 1989, 35 (2): 177-186.
  • 2Miesen R, Boersma B J. Hydrodynamic stability of a sheared liquid film [J]. J. Fluid Mech, 1995, 301: 175 - 202.
  • 3Trifinov Y Y. Wave formation on a film flowing down inclined plane with account for phase transition and shear stress on the interface [J]. Journal of Applied Mechanics and Technical Physics, 1996, 37 (2) : 109- 119.
  • 4胡军,胡国辉,孙德军,尹协远.沿平板下落薄膜流动的研究综述[J].力学进展,2005,35(2):161-169. 被引量:13
  • 5叶学民,阎维平,王欣.蒸发或冷凝薄液膜的时域稳定性特征[J].华北电力大学学报(自然科学版),2003,30(6):43-48. 被引量:6
  • 6叶学民,阎维平.蒸发、等温或冷凝薄液膜二维表面波的通用时空稳定性方程[J].中国电机工程学报,2004,24(3):200-205. 被引量:22
  • 7Hanratty T J. In Waves on Fluid Interfaces [M]. London, Academic Press, 1983: 221- 259.
  • 8Alekseenko S V, Nakoryakov V E, Pokusaev B G. Wave formation on a vertically falling liquid film [J]. AIChE, 1985, 32: 1446- 1460.
  • 9Brauner N, Maron D M, Zijl W. Interfacial collocation equations of thin liquid film: stability analysis [J]. Chem. Engng. Sci. 1987, 42 (8): 2025-2035.

二级参考文献117

  • 1叶学民 阎维平(Ye Xuemin Yah Weiping).沿倾斜壁面下降的蒸发或冷凝降膜二维表面波的线性稳定性(Linear stability of the twodimensional waves of evaporating/condensing film draining down an inclined plate) [J].西安交通大学学报,.
  • 2B6nard H. Les tourbillons cellulaires dans une nappe liquide.Rev Gen Sci Pures Appl,1900, 11:1261-1271.
  • 3Lord Rayleigh. On convection currents in a horizontal layer of fluid when the higher temperature is on the under side.Philos Mag, 1916, 32:529-546.
  • 4Block M. Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature, 1956,178:650-651.
  • 5Pearson J R A. On convection cells induced by surface tension. J Fluid Mech, 1958, 4:489-500.
  • 6Kapitza P L. Wave flow of thin viscous fluid layers. Zh Eksp Teor Fiz, 1948, 18: 3-28; also In: Collected Works of P. L.Kapitza, ed. D. Ter Haar. Oxford: Pergamon, 1965.
  • 7Kapitza P L, Kapitza S P. Wave flow of thin fluid layers of liquid. Zh Eksp Teor Fiz, 1949, 19:105-120,also Ia:Collected Works of P. L. Kapitza, ed. D. Ter Haar. Oxford:Pergamon, 1965.
  • 8Krantz W B, Goren S L. Stability of thin liquid films flowing down a plane. Ind Eng Chem Fund, 1971, 10:91-101.
  • 9Portalski S, Glegg A J. An experimental study of wave inception on falling liquid film.Chem Eng Sci,1972, 27:1257-1265.
  • 10Alekseenko S V, Nakoryakov V Ye, Pokusaev B G. Wave formation on a vertical falling liquid film. AICHE J, 1985,31:1446-1460.

共引文献34

同被引文献27

  • 1齐守良,张鹏,王如竹.液氮流动沸腾换热研究综述[J].低温与超导,2006,34(6):417-423. 被引量:11
  • 2BENOIT S, SERAFIM K, CHRISTIAN R Q, et al. , Interaction of three dimensional hydrodynamic and ther- mocapillary instabilities in film flows [ J ]. Physical. Review. E Statistical Nonlinear&Soft Matter Physics, 2008, 78 (6): 3172-3177.
  • 3SAMANTA A. Stability of inertialess liquid film flowing down a heated inclined plane [ J]. Physics Letters A, 2008, 372 (44): 6653-6657.
  • 4SAMANTA A. Stability of liquid film falling down a ver- tical non-uniformly heated wall [ J]. Physica D. 2008, 237 (20) : 2587 -2598.
  • 5CRASTER R V, MATAR O K. Dynamics and stability of thin liquid films [ J]. Reviews of Modern Physics, 2009, 81 (3): 1131-1198.
  • 6BURMISTROVA O A. Stability of a vertical liquid film with consideration of the marangoni effect and heat ex- change with the environment [ J]. Journal of Applied Mechanics and Technical Physics, 2014, 55 (3) : 386 - 393.
  • 7BENJAMIN T B. Wave formulation in laminar flow down an inclined plane [ J]. Journal of Fluid. Mech. 1957, 2 (6): 554 -573.
  • 8YIH C. Stability of liquid flow down an inclined plane [J]. Physics of Fluids (1958 - 1988), 1963, 6 (3) : 321 -334.
  • 9SREENIVASAN S, LIN S P. Surface tension driven in- stability of a liquid film flow down a heated incline [J ]. International Journal of Heat& Mass Transfer, 1978, 21 (12): 1517-1526.
  • 10RAMASWAMY B, KRISHNAMOORTHY S, JOO S W. Three-Dimensional Simulation of Instabilities and Rivu- let Formation in Heated Falling Films [ J]. Journal of Computational Physics, 1997, 131 ( 1 ) : 70--88.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部