期刊文献+

一种新的免疫克隆算法在CVRP问题中的应用 被引量:1

A New Immune Clonal Algorithm and Its Applications to CVRP
下载PDF
导出
摘要 基于克隆选择学说,通过引入克隆算子提出一种新的免疫克隆算法,并将其用于求解CVRP问题.该算法采用了克隆增殖、高频变异和克隆选择算子的操作,增加了种群中优秀个体获得克隆增殖实现亲和度成熟的机会,提高抗体群分布的多样性,在深度搜索和广度寻优之间取得了平衡.仿真结果表明,该算法具有良好的全局收敛性和较快的收敛速度,能有效解决CVRP问题. Based on the clonal selection theory, a new immune clonal algorithm(ICA) was put forward with the cloning operator introduced in to solve the CVRP problem. Furthermore, in the algorithm, the operators of clonal proliferation, super mutation and clonal selection were adopted to provide more opportunities for the excellent individuals in the group to get clonal proliferation so as to realize the affinity maturation, improve the diversity of the distribution of group of immune bodies and realize balance between the searching in depths and the optimizing in widths. Simulation results shows that the algorithm has a remarkable reliability of global convergence and convergence rate to solve effectively the CVRP problem.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期1373-1376,共4页 Journal of Northeastern University(Natural Science)
基金 国家高技术研究发展计划项目(2003AA414032)
关键词 人工免疫系统 免疫克隆算法 克隆选择 疫苗 CVRP artificial immune system immune clonal algorithm clonal selection vaccine CVRP (capacitated vehicle routing problems)
  • 相关文献

参考文献9

  • 1Dasgupta D, Forrest S. Artificial immune systems in industrial applications [ C ] //Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials (IPMM). New York: IEEE Press, 1999:257 - 267.
  • 2Gasper A, Collard P. From GAs to artificial immune systems: improving adaptation in time dependent optimization [ C ] // Proceedings of the Congress on Evolutionary Computation (CEC 99). New York: IEEE Press, 1999:1859- 1866.
  • 3de Gastro L N, Von Zuben F J. Learning and optimization using the clonal selection principle[J ]. IEEE Transactions on Evolutionary Computation, 2002,6 (3) : 239 - 251.
  • 4Gong M G, Du H F, Jiao L C, et al. Immune clonal selection algorithm for multiuser detection in DS-CDMA systems[C]// Proceedings of the 17th Australian Joint Conference on Artificial Intelligence. Cairns: Springer-Verlag, 2004 : 1219 - 1225.
  • 5郎茂祥,胡思继.用混合遗传算法求解物流配送路径优化问题的研究[J].中国管理科学,2002,10(5):51-56. 被引量:176
  • 6Balazinska M, Merlo E, Dagenais M, et al. Advanced cloneanalysis to support subject-oriented system refactoring [ C]// Proceedings of the Seventh Working Conference on Reverse Engineering. Washington D C: IEEE Press, 2000:98- 107.
  • 7Du H F, Jiao L C, Gong M G. et al. Adaptive dynamic clone selection algorithms [ C ] // Proceedings of the Fourth International Conference on Rough Sets and Current Trends in Computing ( RSCTC ' 2004 ). Uppsala: Springer-Verlag, 2004 : 768 - 773.
  • 8章兢,周泉.基于免疫克隆算法的物流配送车辆路径优化研究[J].湖南大学学报(自然科学版),2004,31(5):54-58. 被引量:10
  • 9de Castro L N, Timmis J. An artificial immune network for multimodal function optimization[ C]//Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE Press, 2002 : 699 - 704.

二级参考文献17

  • 1CUI X, LI M, FANG T. Study of population diversity of multiobjective evolutionary algorithm based on immune and entropy principles[A]. In: Proceedings of the IEEE Conference on Evolutionary Computation[C]. IEEE Compater Society, 2001,1316 -1321.
  • 2LEANDRO N de Castro, FERNANDO J Von Zuben. Learning and optimization using the clonal selection principle [J ]. IEEE Transactions on Evolutionary Computation, 2002, 6 (3): 239 -251.
  • 3谢秉磊 李军 郭耀煌.遗传算法在非满载车辆线路安排问题中的应用[J].中国学术期刊,1999,5(8):1068-1069.
  • 4Clark G.and Wright J..Scheduling of vehicles from a central depot to a number of delivery points[J].Opens.Res,1964,4.
  • 5Gillett B.E.and Miller L R..A Heuristic Algorithm for the Vehicle Dispatch Problem[J].Opens.Res., 1974,22.
  • 6Berthod Krger.Gillotineable Bin Packing:A Genetic Approach[J].European Journal of Operational Research,1995,84:645-661.
  • 7Malmborg,Charles.Genetic Algorithm for Service Level Based Vehicle Scheduling[J].European Journal of Operational Research,1996,93(1):121-134.
  • 8Ochi,Luiz S..Vianna,Parallel Evolutionary Algorithm for The Vehicle Routing Problem with Heterogeneous Fleet[J].Future Generation Computer Systems,1998,14(5-6):285-292.
  • 9姜大立,杨西龙,杜文,周贤伟.车辆路径问题的遗传算法研究[J].系统工程理论与实践,1999,19(6):40-45. 被引量:184
  • 10李大卫,王莉,王梦光.遗传算法在有时间窗车辆路径问题上的应用[J].系统工程理论与实践,1999,19(8):65-69. 被引量:52

共引文献184

同被引文献15

  • 1M. L. Fisher, Optimal solution of Vehicle Routing Problems using mininmm k-trees, Operations Research, 42 (1988), pp. 626-642.
  • 2L. Rodin, B. Golden, A. Assad, and M. Ball, Routing and scheduling of vehicles and crews:The State of the Art. Computers and Operations Research, 10 (1983), pp. 63-211.
  • 3G. Clarke and J. Wright, Scheduling of vehicles from a central depot to a number of delivering points, Operations Research, 12 (1964), pp. 568-581.
  • 4A.JUAN, J. FAULIN, R. RUIZ, B. BARRIOS, S. CABALLE, The SRGCWS hybrid algorithm for solving the capacitated vehicle routing problem. In: Applied Soft Computing, Amsterdam et al., 10(2010)1, pp. 215-224.
  • 5B.E. Gillett and L.R. Miller, "A heuristic algorithm for the vehicle dispatch problem", Operations Research 22,340-349 (1974).
  • 6B.A. Foster and D.M. Ryan, "An integer programming approach to the vehicle scheduling problem", Operations Research 27, 367-384 (1976).
  • 7D.M. Ryan, C. Hjorring and F. Clover, "Extensions of the petal method for vehicle routing", Journal of the Operational Research Society 44, 289-296 (1993).
  • 8J. Renaud, F.F. Bc,etor and G. Laporte, "An improved petal heuristic for the vehicle routing problem", Journal of the Operational Research Society 47, 329-336 (1996).
  • 9P. Toth, D. Vigo, The Vehicle Routing Problem, SIAM Monographs on Discrete Mathematics and Applications, 2002.
  • 10E. Taillard, Parallel iterative search methods for vehicle routing problems, Networks 23 (1993) 661-673.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部