期刊文献+

双机驱动振动系统同步运转稳定性的研究

Stability Research of Synchronous Operation of Dual-Motor Driven Vibrating System
下载PDF
导出
摘要 为了研究双机驱动振动系统同步运转的稳定性问题,建立了振动系统的动力学模型,对系统进行了非线性动力学分析.通过对系统参数进行无量纲化处理,得到了振动系统的频率俘获方程和系统实现自同步运转稳定性的条件,计算出了自同步运转的稳定域.根据自同步运转稳定性的条件和稳定域对系统进行优化设计,调整了振动系统的参数.计算机仿真结果表明振动系统实现了速度同步和相位同步,达到了稳定的自同步状态,验证了自同步运转稳定性条件和稳定域的正确性,证实了优化设计的有效性. To investigate the stability of synchronous operation of a dual-motor driven vibrating system, a dynamic model of the system is developed for non-linear dynamic analysis. By the dimensionless processing of system parameters, a frequency capture equation of the vibrating system and the conditions for implementing the stable self-synchronous operation are obtained to calculate the stability domain of self-synchronous operation. Then, the vibrating system is optimally designed according to the conditions for stability and stability domain to regulate the system parameters. The computer simulation results showed that the vibrating system implements both the speed synchronization and phase synchronization, thus making the self-synchronous state stable. The correctness of the conditions for stability and stability domain of self-synchronous operation has been verified, as well as the effectiveness of the optimal design.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期1473-1476,共4页 Journal of Northeastern University(Natural Science)
基金 国家自然科学基金资助项目(50535010)
关键词 振动系统 同步 稳定性 非线性动力学 优化设计 vibrating system synchronization stability non-linear dynamics optimal design
  • 相关文献

参考文献7

  • 1Blekhman I I, Fradkov A L, Nijmeijer H, et al. On self- synchronization and controlled synchronization[J]. Systems & Control Letters, 1997(31 ) :299 - 305.
  • 2Blekhman I I. Synchronization in science and technology[M]. New York: ASME Press, 1988.
  • 3Blekhman I I, Fradkov A L, Tomchina O P, et al. Self- synchronization and controlled synchronization: general definition and example design [ J ]. Mathematics and Computers in Simulation, 2002 (58) : 367 - 384.
  • 4Quinn D, Rand R, Bridge J. The dynamics of resonance capture[J]. Nonlinear Dynamics, 1995(8) : 1 - 20.
  • 5Boccaletti S, Bragard J. Synchronization in non-identical extended systems [J ]. Physical Review, Letters, 1999, 83 (3) :536 - 539.
  • 6Zhang T X, Wen B C, Fan J. Study on synchronization of two eccentric rotors driven by hydraulic motors in one vibrating systems[J]. Shock and Vibration, 1997,4(6):305-310.
  • 7Osipov G, Kurths J, Zhou C. Synchronization in oscillatory networks[M]. Berlin: Springer, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部