期刊文献+

基于主曲线的脱机手写英文字母结构特征分析及选取 被引量:4

Analysis and Extraction of Structural Features of Off-line Handwritten Letters Based on Principal Curves
下载PDF
导出
摘要 要提高脱机手写英文字母识别的识别率,关键是特征的提取与有效鉴别特征的抽取。主曲线是主成分分析的非线性推广,它是通过数据分布"中间"并满足"自相合"的光滑曲线。它较好地反映了数据分布的结构特征。首先将主曲线用于训练数据的特征提取;其次在详细分析字母主曲线的结构特点的基础上,选择出用于字母识别的粗分类、细分类特征;最后在对手写字母进行识别时,先用这些特征进行一级分类;对个别不能很好区分的相似字母用模糊数学方法进行二级模糊分类。所提方法在CEDAR手写体小写字母数据库上的实验结果表明:利用这些特征能有效区分相似字母,提高手写小写英文字母的识别率,不但能为脱机手写小写英文字母识别的研究提供一条新途径,而且能为手写单词识别提供有用信息。 Extraction and choice of features are critical to improve the recognition rate of off-line handwritten letters. Principal curves are nonlinear generalizations of principal components analysis. They are smooth self-consistent curves that pass through the "middle" of the distribution. They preferably reflect the structural features of the data. Firstly principal curves were used to extract the structural features of training data. Secondly we chose the classification features used for letters coarse classification and precise classification by analyzing the structural features of principal curves in detail. Finally we separately carried out coarse classification and precise classification in the handwritten letters recognition, and we used fuzzy mathematics method to classify several similar letter once again. The CEDAR hand-written lowercase letter database was used in the experiment. The result of experiment shows that these features have good discriminating power of similar letters. The proposed method can effectively improve the recognition rate of off-line handwritten letters and provide a new approach to the research for off-line handwritten words recognition.
出处 《计算机科学》 CSCD 北大核心 2009年第10期197-201,共5页 Computer Science
基金 国家自然科学基金项目(No.60775036,60703007) 国家973项目(2003CB316902) 博士学科点专项科研基金(20060247039)资助
关键词 主曲线 结构特征 特征选取 Principal curves, Structural features, Features extraction
  • 相关文献

参考文献20

  • 1Hastie T. Principal Curves and Surfaces[R]. Stanford University: Laboratory for Computational Statistics, Department of Statistics, 1984.
  • 2张军平,王珏.主曲线研究综述[J].计算机学报,2003,26(2):129-146. 被引量:62
  • 3Banfield J D,Raftery A E. Ice Floe Identification in Satellite Images Using Mathematical Morphology and Clustering about Principal Curves[J]. Journal of the American Statistical Association, 1992,87(417) : 7-16.
  • 4Kegl B, Krzyzak A, et al. A Polygonal Line Algorithm for Constructing Principal Curves[C]//Proceedings of Neural Information Processing System. Denver Colorado, USA: Computer Press, 1999 : 501-507.
  • 5Verbeek JJ, Vlassis N, Krose B. A K-Segments Algorithm for Finding Principal Curve[R]. Amsterdam: Computer Science of Institute, University of Amsterdam, 2000.
  • 6Delicado P. Another Look at Principal Curves and Surfaces[J]. Journal of Multivariate Analysis, 2001,77 ( 1 ) : 84-116.
  • 7Chen Dewang, Zhang Junping, Tang Shuming, et al. Freeway Traffic Stream Modelling based on Principal Curves and its Analysis[J]. IEEE Transactions on Intelligent Transportation Systems, 2004,5(4) : 246-258.
  • 8Zhang Hongyun, Miao Duoqian. Automatic Recognition System of Bills Based on Principal Curves[J]. Journal of Information and Computational Science, 2004,1(2) : 199-204.
  • 9Kegl B, Krzyzak A, et al. Pieeewise Linear Skeletonization Using Principal Curves[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2002,24 ( 1 ): 59-74.
  • 10刘济林,宋加涛,丁莉雅,马洪庆,李培弘.高性能的车牌识别系统(英文)[J].自动化学报,2003,29(3):457-465. 被引量:21

二级参考文献65

  • 1章毓晋.过渡区和图象分割[J].电子学报,1996,24(1):12-17. 被引量:54
  • 2任金昌 赵荣椿 等.一种基于标记的自动矢量化方法.中国图像科学技术新进展,第九届全国图像图像图形科技大会论文集[M].西安:-,1998,5.183-186.
  • 3[1]Lam L, et al. Thinning methodologies-A comprehensive survey [ J ].IEEE Trans., 1992, PAMI-14(9): 869 - 885.
  • 4[2]Kiryati N, et al. Detecting synmetry in grey level images: The global optimization approach [ J ]. Int. J. Computer Vision, 1998,29 ( 1 ): 29 -45.
  • 5[3]Arcelli C, et al. Sketching a grey-tone pattern from its distance transform [ J ]. Pattern Recognition, 1996,29(12): 2033 - 2045.
  • 6[4]Tari Z S G, et al. Extraction of shape skeletons fiom grayscale images[ J]. Computer Vision and Image Understanding, May, 1997, 66 (2):133- 146.
  • 7[5]Arcelli C.Topological changes in grey-tone digital picture [J] .Pattern Recognition, 1999,32:1019 - 1023.
  • 8[6]Vincent L, et al. Watersheds in digital spaces: An efficient algorithm based on immersion simulations [J]. IEEE Trans. PAMI,1991,13(6):583 - 598.
  • 9[7]Hilditch C J. Linear Skeletons From Square Cupboard [ M] . in Machine Intell. ( B Meltzer and D Michie, Eds. ). New York: Amer Elsevier,1969,4:403 -420.
  • 10[8]Deseilligny M P, et al. Veinerization: A new shape description for flexible skeletonization [ J ]. IEEE Trans. PA MI-20 ( 5 ), May, 1998: 505 521.

共引文献121

同被引文献34

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部