期刊文献+

命题编码中公理的组合与设计

Combination and Designation of Axioms in Proposional Encodings
下载PDF
导出
摘要 近年来,基于可满足性的规划方法研究逐渐成为智能规划研究领域中的热点。提出3种基于Graphplan的编码方式中公理的改进:动作互斥的部分放松、动作互斥的完全放松方法、添加框架公理。基于SATPLAN2006规划系统分别实现上述3种改进的编码方式,并对国际规划竞赛中选用的标准后勤域与积木世界域的问题样例予以测试,分析不同编码方式的编码规模与求解效率,验证了基于Graphplan编码方式的改进在绝大多数情况下是有效的。最后,实现基于状态的编码方式,并对上述两个域进行测试,比较约简动作与约简状态这两种极端方式的求解效率和编码规模。实验结果表明,在后勤域的某些问题上基于状态的编码方式比基于动作的编码方式有效得多。上述的改进策略表明,可根据问题域的特性等来考虑该问题最适宜哪些公理组合的编码方式,而不固定使用某种特定的编码方式。 In recent years, researches on planning as satisfiability have become a popular trend. We proposed partial relaxation and completed relaxation methods about mutex actions, appended the frame axioms finally. Taking SATP-LAN2006 as the base,we implemented these improved encoding methods respectively, tested them in the logistics track and the block world track which are used in international planning competition, and analyzed the encoding scale and plan efficiency of different encoding methods, and then validated the improvements based on the graphplan encoding method in the overwhelming majority situation are effective. Finally, we implemented the state-based encoding method in SATP-LAN2006 planner, tested on the above tracks and compared two extremely conditions, which eliminate actions and states respectively. The experimental results show that state-based encoding method is more effective in logistics track than action-based encoding. The above improving strategies about the SATPLAN2006 planner are proved effective, and we should decide which combination of axioms in one encoding method is most suitable by consideing the characteristics of different tracks, rather than using certain encoding method absolutely.
出处 《计算机科学》 CSCD 北大核心 2009年第10期202-208,共7页 Computer Science
基金 国家自然科学基金重大项目(60496321) 国家自然科学基金项目(60573073 60503016 60603030 60773099 60703022 60873149) 国家863高技术研究发展计划项目(2006AA10Z245 2006AA10A309) 吉林省科技发展计划重点项目(20060213) 欧盟项目TH/AsiaLink/010(111084)资助
关键词 智能规划 基于可满足性的规划 Graphplan 公理 Intelligent planning,Planning as satisfiability,Graphplan,Axiom
  • 相关文献

参考文献1

二级参考文献37

  • 1Green C. Application of theorem proving to problem solving. In:Proc. 1st Int. Joint Conf. AI. 1969. 219~239
  • 2Fikes R,Nilsson N. STRIPS:A new approach to the application of theorem proving to problem solving. Artificial Intelligence, 1971,2:189~208
  • 3McDermott D,et al. Planning:What it is,What it could be,An introduction to the Special Issue on Planning and Scheduling. Artificial Intelligence, 1995,76:1 ~ 16
  • 4Weld D S. Recent Advances in AI Planning. Artificial Intelligence (to appear). 1999. ftp://ftp. cs. washington. edu/pud/ai/pi2. ps
  • 5Yang Qiang. Intelligent Planning A Decomposition and Abstraction Based Approach. Berlin: Springer, 1997
  • 6Kautz H,McAllester D,Selman B. Encoding plans in propositional logic. In:Proc. 5th Int. Conf. Principles of Knowledge Representation and Reasoning, 1996
  • 7Kautz H,Selman B. Pushing the envelope: Planning,prepositional logic, and stochastic search. In: Proc. 13th Nat. Conf. AI. 1996.1194~1201
  • 8Kautz H,Selman B. Blackbox:A new approach to the application of theorem proving to problem solving. In: AIPS98 Workshop on Planning as Combinatorial Search. 1998. 58~60
  • 9Kautz H,Selman B. The role of domain specific knowledge in the planning as satisfiability framework. In: Proc. 4th Intl. Conf. AI Planning Systems. 1998
  • 10Tate A,Drabble B,Dalton J. O-Plan:a Knowledge-Based Planner and its Application to Logistics. AAAI Press ,Menlo Park ,California. May 1996. ftp ://ftp. aiai. ed. ac. uk/pub/documents/1996/96-arpi-oplan-and-logistics. ps

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部