期刊文献+

一种区间数分解与定标算法及其扩展形式背景的概念格生成方法 被引量:1

Interval Scaling Algorithm and its Concept Lattice Construction from Extended Formal Context
下载PDF
导出
摘要 现有的概念格模型无法处理既包含以布尔值表示的信息,又包含以标量、模糊数及区间数表示的信息。因此,针对包含所有这些信息类型的扩展的形式背景提出它的处理方法,在此基础上,生成经扩展的概念格,是一项有意义的工作。提出了一种新的区间数分解与定标算法,以处理含有多种类型的扩展形式背景,并给出了相应的扩展格生成算法。最后,实验表明,该方法具有良好的效果。 The existing concept lattice model is unable to process data which contains not only fuzzy information but also scalar and Boolean information. The extended formal context includes many kinds of information such as scalar, fuzzy, Boolean, and interval. Therefore, how to build concept lattice from extended formal context, is a meaningful study. An interval scaling algorithm is proposed here to deal with the extended formal context and a corresponding concept lattice construction method is produced. In the end of this paper, the experimental results show that this algorithm is useful.
出处 《计算机科学》 CSCD 北大核心 2009年第10期213-216,共4页 Computer Science
基金 国家自然科学基金(60575035) 上海高校选拔培养优秀青年教师科研专项基金(shu-07027) 上海市重点学科建设项目(J50103)资助
关键词 概念格 概念格构造算法 形式概念分析 模糊概念格 区间概念格 Concept lattice, Construction algorithm, Formal concept analysis, Fuzzy concept lattice, Interval concept lattice
  • 相关文献

参考文献16

  • 1Wille R. Concept lattices and conceptual knowledge systems[J]. Computers and Mathematics with Application, 1992,23:493-522.
  • 2Krohn U, Davies N J, Weeks R. Concept lattices for knowledge management[J]. BT Technol J, 1999,17(4):118-116.
  • 3Kuznetsov S O. Machine Learning on the Basis of formal Concept Analysis[J]. Automation and Remote Control, 2001, 62 (10) : 1543-1564.
  • 4Carpineto C, Romano G. Information retrieval through hybrid navigation of lattice representations[J]. Int. J. Human-Computer Studies, 1996,45 : 553-578.
  • 5Godin R, Mili H, Mineau G, et al. Design of class hierarchies based on concept(Galois) lattices[J]. Theory and Application of Object Systems, 1998,4(2) : 117-134.
  • 6Wolff K E. Conceptual interpretation of fuzzy theory[C]//The 6th European Congress on Intelligent Techniques and Soft Computing. 1998,1 : 555-562.
  • 7Burusco A, Fuentes R. The study of L-fuzzy concept lattices[J]. Mathware Soft Comput, 1994,3 : 209-218.
  • 8Girard R Ralambondrainy H. Conceptual classification from imprecise data[C]//Proceedings of Information Processing and Management of Uncertainty in Knowledge-Based System. 996, 1:247-252.
  • 9Girard R, Ralambondrainy H. Conceptual classification from structured and fuzzy data[C]//Proceedings of the 6th IEEE International Conference on Fuzzy System. 1997:135-142.
  • 10Bordat J P. Caleul pratique du treillis de galois d' une correspondance[J]. Math. Et Sci. Humaines, 24eme annee, 1986,96 : 31-47.

二级参考文献11

  • 1Carpineto C, Romano G. Information retrieval through hybrid navigation of lattice representations. International Journal of Human-Computer Studies, 1996, 45: 553-578
  • 2Carpineto C, Romano G. A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning, 1996, 24(2):95-122
  • 3Godin R, Mineau G W, Missaoui R. Incremental structuring of knowledge bases. In: Proc International Symposium on Knowledge Retrieval, Use, and Storage for Efficiency(KRUSE'95), Santa Cruz, 1995. 179-193
  • 4Godin R, Missaoui R, Alaoui H. Incremental concept formation algorithms based on Galois (concept) lattices. Computational Intelligence, 1995, 11(2):246-267
  • 5Godin R, Mili H, Mineau G W et al. Design of class hierarchies based on concept (Galois) lattices. Theory and Application of Object Systems, 1998, 4(2):117-134
  • 6Nourine L, Raynaud O. A fast algorithm for building lattices. Information Processing Letters, 1999, 71(5-6):199-204
  • 7Snelting G, Tip T. Reengineering class hierarchies using concept analysis. In: Proc ACM SIGSOFT Symposium on the Foundations of Software Engineering, Lake Buena Vista, Frorida, USA, 1998. 99-110
  • 8Wille R. Restructuring lattice theory: An approach based on hierarchies of concepts. In: Rival I eds. Ordered Sets, Dordrecht: Reidel, 1982. 445-470
  • 9Xie Z, Liu Z. Research on classifier based on lattice structure. In: Proc Conference on Intelligent Information Processing, 16th World Computer Congress, Beijing, China, 2000. 333-338
  • 10Bordat J P. Calcul pratique du treillis de galois d'une correspondance. Mathematiques et Sciences, 1986, 24eme année, 96:31-47

共引文献119

同被引文献9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部