期刊文献+

基于分裂法及Hermite多项式逼近的随机有限元 被引量:1

Stochastic Finite Element Method with Decomposition and Hermite Polynomials Approximation
下载PDF
导出
摘要 针对随机结构响应的统计矩、可靠性、灵敏度分析问题,提出了一种新的基于Hermite多项式逼近的随机有限元方法。所提方法利用分裂法将多维响应函数问题转换成单维问题,并采用Hermite多项式逼近单随机变量的响应函数,Hermite多项式系数由Gauss-Hermite积分法求解,最后利用Monte-Carlo法求解显式化后的响应函数的统计矩、失效概率、灵敏度。本文方法简单实用,不用考虑计算导数和设计点问题,因此可十分方便的用于结构的概率分析。文中算例充分说明了所提方法的合理性与可行性。 To evaluate statistical moments of response, reliability and reliability sensitivity of stochastic structures, a new stochastic finite element method is presented on the basis of Hermite polynomials approximation. Decomposition is used to transform the multi-dimensional response function into one-dimensional function. And then the Hermite polynomials are employed to approximate the one-dimensional response function, and the coefficients of the Hermite polynomials can be determined by the Gauss-Hermite integration. The statistical moments, failure probability and reliability sensitivity of the approximately explicit response function are obtained by Monte-Carlo numerical simulation, where the computation of derivatives and design points becomes unnecessary. A few examples demonstrate the validity.
机构地区 西北工业大学
出处 《应用力学学报》 CAS CSCD 北大核心 2009年第3期569-574,共6页 Chinese Journal of Applied Mechanics
基金 国家863高技术研究发展计划(2007AA04z401) 国家自然科学基金(10572117 50875213) 新世纪优秀人才支持计划(NCET-05-0868) 航空基础基金(2007ZA53012)
关键词 随机结构 Hermite多项式逼近 分裂法 Gauss-Hermite 积分 概率分析 stochastic structures, hermite polynomials approximation, decomposition method, the gauss-hermite integration, probability analysis.
  • 相关文献

参考文献10

  • 1Paola M D. Probabilistic analysis of truss structures with uncertain parameters (virtual distortion method approach)[J]. Probabilistic Engineering Mechanics, 2004,19(4): 321-329.
  • 2Baroth J, Bode L, Bressolette P. SFE method using Hermite polynomials: An approach for solving nonlinear mechanical problems with uncertain parameters[J].Computer Methods in Applied Mechanics and Engineering, 2006,195(44-47): 6479-6501.
  • 3Rahman S, Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics[J]. Probabilistic Engineering Mechanics, 2004,19(4):393-408.
  • 4Rabitz H, Ahs O. General foundations of high-dimensional model representations[J]. Journal of Mathematical Chemistry, 1999, 25(2-3):197-233.
  • 5Zhao Y G, Ono T. New point estimates for probability moments[J]. Journal of Engineering Mechanics, 2000, 126(4):433-436.
  • 6Sues R H, Cesare M A. System reliability and sensitivity factors via the MPPSS method[J]. Probabilistic Engineering Mechanics, 2005,20(2) : 148-157.
  • 7林家浩,易平,等.线性随机结构的平稳随机响应[J].计算力学学报,2001,18(4):402-408. 被引量:37
  • 8Kaymaz I, McMahon C A. A response surface method based on weighted regression for structural reliability analysis[J], Probabilistic Engineering Mechanics, 2005,20(1): 11-17.
  • 9刘丽芳.不同强度理论条件下压力容器的可靠性分析[J].湖北工业大学学报,1999,19(3):40-43. 被引量:3
  • 10Wu Y T, Mohanty S. Variable screening and ranking using sampling-based sensitivity measures[J]. Reliability Engineering and System Safety, 2006,91(6):634-647.

二级参考文献2

共引文献38

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部