期刊文献+

可变场所的异常行为识别方法 被引量:6

A Method of Abnormal Action Recognition in Variable Scenarios
下载PDF
导出
摘要 在视觉分析中,人的同一动作在不同场景下会有截然不同的理解。为了判断在不同场景中行为是否为异常,在监控系统中使用双层词包模型来解决这个问题。把视频信息放在第1层包中,把场景动作文本词放在第2层包中。视频由一系列时空兴趣点组成的时空词典表示,动作性质由在指定场景下的动作文本词集合来确定。使用潜在语义分析概率模型(pLSA)不但能自动学习时空词的概率分布,找到与之对应的动作类别,也能在监督情况下学习在规定场景下运动文本词概率分布并区分出对应异常或正常行动结果。经过训练学习后,该算法可以识别新视频在相应场景下行为的异常或正常。 Different understanding results in different scenarios even for the same person to conduct visual analysis. In order to determine whether the behavior is abnormal in different scenarios, a double-layer bag-of-words model is proposed to solve the problem in surveillance system. The video information is processed in the first layer of Bag-of-Words, and the information of scenario-action text words is included in the second one. A video sequence is represented as a collection of spatial-temporal codebook by extracting space-time interest points. A behavior characteristic is represented as a collection of behavior text words in special scenarios. Probabilistic latent semantic analysis (pLSA) model is adopted to automatically learn the probability distributions of spatial-temporal words and the topics correspond to human action categories. PLSA also can learn the probability distributions of the motion text words in a scenario with supervisor and the topics correspond to anomalous or normal actions. The algorithm can categorize the human anomalous or normal action contained in the special occasion to a novel video sequence after being trained.
作者 张军 刘志镜
出处 《中国图象图形学报》 CSCD 北大核心 2009年第10期2097-2101,共5页 Journal of Image and Graphics
基金 广东省教育部产学研结合项目(2006D90704017) 河北省教育厅科研项目(Z2009127)
关键词 异常行为 兴趣点 双层词包 潜在含语义分析概率 可变场所 abnormal action, interest points, double-layer bag-of-words, probabilistic latent semantic analysis, variable scenarios
  • 相关文献

参考文献7

  • 1Elgammal A, Duraiswami R, Harwood D, et al. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ J ]. Proceedings of the IEEE, 2002, 90 (7) : 1153-1163.
  • 2Hu Wei-ming, Tan Tie-niu, Wang Liang,et al. A survey on visual surveillance of object motion and behaviors [ J ]. IEEE Transactions on System, Man and Cybernetics, 2004, 34(3) : 334-352.
  • 3Dollar P, Rabaud V, Cottrell, et al. Behavior recognition via sparse spatio-temporal features [ A]. In:Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance [ C ], Beijing,2005 : 65-72.
  • 4Niebles J C, Wang H, Li Fei-fei. Unsupervised learning of human action categories using spatialtemporal words [ J ]. International Journal of Computer Vision, 2008, 79 (3) : 299-318.
  • 5Hofmann T. Probabilistic latent semantic indexing [ A ]. In: Proceedings of the 22nd Annual International Conference on Research and Development in Information Retrieval [ C ], California, USA, 1999, 50-57.
  • 6CBSR. Center for Biometrics and Security Research [ EB/OL ]. http://www, cbsr. ia. ac. cn/china/Action% 20Databases% 20CH. asp, 2008-04-13/2009-03-21.
  • 7Haritaoglu I, Harwood D, Davis L S. W4 real-time surveillance of people and their activities [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22 (8) : 809-830.

同被引文献33

  • 1李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 2Mehran R, Oyama A, Shah M. Abnormal crowd behavior detection using social force model [C]// IEEE Computer Society Conference on Computer Vi- sion and Pattern Recognition (CVPR). Miami, Florida, USA:Is. n. 7,2009:935-942.
  • 3Wu Shandong, Moore B E, Shah Mubarak. Chaotic invariants of Lagrangian particle trajectories for anomaly detection in crowded scenes [C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). San Francisco, CA: Is. n, ],2010:2054-2060.
  • 4Mahadevan Vijay, Li Weixin, Bhalodia Viral, et al. Anomaly deteetionin crowded scenes [C]//IEEE Conf on Computer Vision and Pattern Recognition. San Francisco ,CA : Is. n. ], 2010 .. 1975-1981.
  • 5Chan A B, Vasconcelos N. Modeling, clustering, and segmenting video with mixtures of dynamic tex- tures[J]. PAMI, 2008,30(5) : 909-926.
  • 6Ramin Mehranl, Moore B E, Mubarak Shah. A streakline representation of flow in crowded scenes [C]// ECCV 2010, Part III, LNCS 6313. Crete, Greece : Es. n. :, 2010 : 439-452.
  • 7Ronald Poppe. A survey on vision-based human ac- tion recognition [J]. Image and Vision Computing, 2010, 28:976-990.
  • 8Laptev I, Lindeberg T. Space-time interest points [C]// International Conference on Computer Vision (ICCV). Nice ,France : Es. n. 7, 2003,I : 432-439.
  • 9Dollar P, Rabaud V, Cotterll G, et al. Behavior recognition via sparse spatio-temporal features[C]// Proceedings of the 2nd Joint IEEE International Workshop on Visual Surveil-lance and Performance Evaluation of Tracking and Surveillance. Beijing, China : Is. n. 1,2005 : 65-72.
  • 10WIllems G, Tuytelaars T, Gool L V. An efficient dense and scale-invariant spatio-temporal interest point detector [ C ]//Proceedings of the European Conference on Computer Vision (ECCV). Marseille, France : Is. n. ], 2008 : 650-663.

引证文献6

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部