期刊文献+

一种可注射自固化含锶复合胶原磷酸钙骨水泥的结构和性能 被引量:4

Structure and performance of injectable strontium-contained collagen calcium phosphate cement
下载PDF
导出
摘要 背景:骨科学界正致力于磷酸钙骨水泥的改性研究,通过向磷酸钙骨水泥中加入不同的添加剂,包括固化促进剂、增塑剂、抗水/血溶剂、致孔剂、增强剂,或是将生物活性物质或药物复合到磷酸钙骨水泥中,以提高其理化和生物学性能是目前该领域的研究热点。目的:了解一种新型可注射可降解的磷酸钙骨水泥的理化性能。设计、时间及地点:重复测量试验,于2008-12/2009-05在华南理工大学材料学院国家重点实验室完成。材料:采用部分结晶的磷酸钙,部分结晶的磷酸锶和二水磷酸氢钙,添加改性淀粉﹑Ⅰ型胶原制备了新型可注射自固化磷酸钙骨水泥。方法:采用X’PertPro型X射线衍射仪对磷酸钙骨水泥固化体进行相分析。采用HITA2-CHIH-800型透射/扫描电子显微镜对磷酸钙骨水泥固化体的形貌进行观察。用维卡仪根据美国材料与试验协会ASTMC190203标准进行凝结时间的测试。使用Instron5567型万能电子材料试验机来测试固化样品的抗压强度。用注射器测试材料的可注射性,针头内径为1.6mm。通过浸泡摇动定性测试材料的抗溃散性。主要观察指标:①骨水泥水化产物的相组成和显微结构。②骨水泥的凝固时间、可注射性和抗压强度。③骨水泥的抗溃散性。结果:研究表明该材料具备优良的可注射性能;添加改性淀粉显著的改善了骨水泥的抗溃散性。随着骨水泥液固比的增大,骨水泥的抗压强度下降,当骨水泥的液固比为0.3时,骨水泥的抗压强度为(48.0±2.3)MPa,当骨水泥的液固比为0.6时,骨水泥的抗压强度下降为(21.0±2.5)MPa。骨水泥的水化产物为类骨羟基磷灰石结晶,从X射线衍射图谱还可以看出,因骨水泥的水化不完全,基线水平波动较大,说明了在充分水化的条件下,骨水泥的压缩强度还能进一步提高。结论:制备的可注射含锶复合胶原磷酸钙骨水泥符合人体生物力学强度,能满足手术条件要求。 BACKGPOUND: Orthopedic academics are committed to the modification of calcium phosphate cement (CPC) by adding different additives, including the promotion of curing agents, piasticizers, anti-water blood solvent, porogen, enhancer, or biological activity substance or drug compound to the CPC in order to enhance its physical and chemical and biological properties which is a research hotspot in the field.OBJECTIVE: To investigate the physical and chemical characteristics of a biodegradable injectable CPC. DESIGN,TIME AND SETTING: Duplicated testing study was performed at the National Key Laboratory, College of Materials, South China University of Technology from December 2008 to May 2009. MATERIALS: Calcium phosphate with partial crystallization and strontium phosphate and calcium hydrogen phosphate dehydrate with partial crystallization were added with modified starch and type I collagen to prepare a new type of seJf-injectable CPC. METHODS:CPC phase was analyzed using X'Pert Pro X-ray diffractometer; CPC morphology was observed using HITA2 -CHIH-800 transmission/scanning electron microscope; setting-up time was tested using Vicat apparatus according to A S TM C190203 standard; compressive strength was measured using Instron 5567 omnipotent electron apparatus; syringeability was detected using sydnge apparatus with 1.6 mm of inside diameter; collapsibility was tested using soaking-shaking quantitative materials.MAIN OUTCOME MEASURES: Phase component and microstructure of CPC products, setting-up time, syringeability, compressive strength, and collapsibility. RESULTS: The material coul be injected with an excellent performance, and the modified starch significantly improved the resistance of bone cement collapsibility. As the bone cement liquid-solid ratio increased, the compressive strength of cement decreased. When the bone cement liquid-solid ratio was 0.3, the compressive strength for cement was (48.0±2.3) MPa; when the bone cement liquid-solid ratio was 0.6, the compressive strength of bone cement reduced to (21.0±2.5) MPa. Hydration product of cement-like bone hydroxyapatite crystallization also could be seen from the X-ray diffraction, due to the hydration of cement was not complete, a baseline level of volatile explained fully hydrated conditions, suggesting that the bone cement could further improve the compression strength. CONCLUSION: Developed an injectable strontium-contained collagen CPC is coincidence with the biomechanical strength of the human body and meets the requirements of the operation conditions.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2009年第38期7411-7416,共6页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 广州市医药科技重点项目(2007-ZDi-11)资助~~
  • 相关文献

参考文献15

  • 1Wang XP, Ye JD,Wang YJ,et al. Control of crystallinity of hydrated products in a calcium phosphate bone cement. J Biomed Mater Res A. 2007;81A:781-790.
  • 2Wang X, Ye J, Wang Y. Influence of a novel radiopacifier on the properties of an injectable calcium phosphate cement. Acta Biomater. 2007;3(5):757-763.
  • 3Bohner M, Gbureck U, Barralet JE. Technological issues for the development of more efficient calcium phosphate bone cements a criticat assessment. Biomaterials. 2005;26(33):6423-6429.
  • 4Kurashina K, Kurita H, Hirano M,et al. In vivo study of calcium phosphate cements: implantation of an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement paste. Biomaterials. 1997; 18(7):539-543.
  • 5Kurashina K, Kurita H, Kotani A,et al. Experimental cranioplasty and skeletal augmentation using an alpha-tricalcium phosphate/dicalcium phosphate dibasic/tetracalcium phosphate monoxide cement: a preliminary short-term experiment in rabbits Biomaterials. 1998;19(7-9):701-706.
  • 6Costantino PD, Friedman CD, Jones K, et al. Experimental hydroxyapatite cement cranioplasty. Plast Reconstr Surg. 1992; 90(2): 174-185.
  • 7Miyamoto Y, Ishikawa K, Takechi M,et al. Basic properties of calcium phosphate cement containing atelocollagen in its liquid or powder phases. Biomaterials. 1998; 19(7-9):707-715.
  • 8Knepper-Nicolai B, ReinstorfA, Hofinger I,et al. luence of osteocalcin and collagen I on the mechanical and biological properties of Biocement D. Biomol Eng. 2002;19(2-6):227-231.
  • 9Tampieri A, Celotti G, Landi E,et al. Biologically inspired synthesis of bone-like composite: self-assembled collagen fibers/hydroxyapatite nanocrystals. J Biomed Mater Res A. 2003; 67(2):618-625.
  • 10Wang YJ,Yang CR,Chen XF, et al. Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid-phosphatidylserine for tissue engineering applications. Macromolecular materials and engineering. 2006;291 (3):254-262.

二级参考文献4

  • 1WD Kingery 清华大学译.陶瓷导论[M].北京:中国建筑工业出版社,1982.130-142.
  • 2陈楷.陶瓷材料物理性能,第1版[M].北京:中国建筑工业出版社,1980.5-43.
  • 3Grynpas M D,Bone,1996年,18卷,3期,253页
  • 4Kingery W D,陶瓷导论,1982年,130页

共引文献46

同被引文献116

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部