期刊文献+

基于神经网络的变压器故障诊断系统 被引量:3

Transformer Fault Diagnosis System Based on Neural Network
下载PDF
导出
摘要 针对变压器故障征兆和故障类型的非线性特征,结合油中气体分析法,采用改进后的BP神经网络进行故障诊断。经统计分析和数据预处理确定网络输入,使用择优选取法优化网络结构参数,使训练速度和误差精度达到较满意的效果。并基于此算法用JAVA语言开发了小巧实用的故障诊断系统,能够较好地完成网络训练、故障诊断和数据维护等功能。 In view of non-linear characteristics between fault symptoms and fauh types of transformers, an improved BP neural network is used to diagnose transformer fault with the data of dissolved gas analysis (DGA). After pretreatment of input data and optimization of parameters of network structure, a satisfactory result is obtained in training speed and diagnosis accuracy.Based on the algorithm, a fault diagnosis system is developed in JAVA language which is able to complete the functions of network training, fault diagnosis and data maintenance.
出处 《微计算机信息》 2009年第28期103-104,共2页 Control & Automation
关键词 BP神经网络 变压器 故障诊断 DGA JAVA BP neural network transformer fault diagnosis dissolved gas analysis(DGA) JAVA
  • 相关文献

参考文献8

二级参考文献24

  • 1常文平,范峥,王晓敏.变压器故障在线监测系统及其应用[J].微计算机信息,2005,21(08S):125-126. 被引量:9
  • 2夏克文,李昌彪,沈钧毅.前向神经网络隐含层节点数的一种优化算法[J].计算机科学,2005,32(10):143-145. 被引量:122
  • 3徐文,王大忠,周泽存,陈珩.人工神经网络在变压器特征气体法故障诊断中的应用[J].高电压技术,1996,22(2):27-30. 被引量:26
  • 4顾惠祥.气相色谱实用手册[M].北京:化学工业出版社,1990..
  • 5顾蕙祥,气相色谱实用手册,1990年
  • 6Osuna E, Freund R, Girosi F. Training support vector machines: an application to face detection. In: Proceedings of Computer Vision and Pattern Recognition 97', Puerto Rico, 1997. 130 ~ 136.
  • 7Platt J. Fast training of SVMs using sequential minimal optimization. In:Scholkpf B, Burges C, Smola A, eds., Advances in kernel methods-support vector machine learning, Cambridge: MIT Press, 1998.
  • 8Berther T, Davies P. Condition monitoring of check valves in reciprocating pumps. Tribology Transactions, 1991, 34:321 ~326.
  • 9Xu W H, Fu K. An intelligent diagnostic system for reciprocating machine.In: Proceedings of IEEE International Conference on Intelligent Processing Systems, Beijing, 1997, 1 520~ 1 522.
  • 10Sbi Wengang, Wang Rixin, Huang Wenhu. Application of rough set theory to fault diagnosis of check valves in reciprocating pumps. In: Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering, Toronto, 2001. 1 247~ 1 250.

共引文献85

同被引文献25

  • 1罗金鸣.基于AGA的RBF神经网络在电厂水质评价中的研究[学位论文].阜新:辽宁工程技术大学,2009.
  • 2Jian-DaWu , Yu-Hsuan Wang, Peng-Hsin Chiang , Mingsian R.Bai. A study of fault diagnosis in a scooter using adaptive order tracking technique and neural network[J]. Expert Systems with Applications. 2009, 36:49-56.
  • 3Jie Zhang. Improved on-line process fault diagnosis through information fusion in multiple neural networks [J]. Computers and Chemical Engineering. 2006, 30:558-571.
  • 4Czeslaw T. Kowalski, Teresa Orlowska-Kowalska. Neural networks application for induction motor faults diagnosis [J]. Mathematic sand Computers in Simulation. 2003, 63, 435--448.
  • 5Xiuqiao Xiang, Jianzhong Zhou, Xueli An, Bing Peng, Junjie Yang. Fault diagnosis based on Walsh transform and support vector machine [J]. Mechanical Systems and Signal Processing. 2008,22:1685-1693.
  • 6Hyun Joon Shina, Dong-Hwan Eomb, Sung-Shick Kim. Oneclass support vector machines an application In machine fault detection and classi cation [J]. Computers & Industrial Engineering. 2005, 48:395-408.
  • 7Sheng-FaYuana, Fu-Lei Chu. Support vector machines based fault diagnosis for turbo-pump rotor [J]. Mechanical Systems and Signal Processing. 2006, 20:939-952.
  • 8Hopkins R W, Miller P, Swanson R E, Scheible J J. Method of Controlling a Manufacturing Process Using Multivariate Analysis, Technical Report U.S [R]. Patent 5442562, Eastman Kodak Company, USA, 1995.
  • 9Yue H H, Qin S J. Reconstruction based fault identification using a combined index [J]. Industrial and Engineering Chemistry Research. 2001, 40(20): 4403-4414.
  • 10McNabb C A, Qin S J. Fault diagnosis in the feedback-invariant subspace of closed-loop systems[J]. Industrial and Engineering Chemistry Research. 2005, 44(8): 2359-2368.

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部