期刊文献+

Analysis of the Vertical and Lateral Interactions in a Multisheet Array of InAs/GaAs Quantum Dots

Analysis of the Vertical and Lateral Interactions in a Multisheet Array of InAs/GaAs Quantum Dots
下载PDF
导出
摘要 The vertical and lateral interactions in a multisheet array of InAs/GaAs quantum dots are analyzed by finite element method (FEM). It is shown that due to the effects of vertical interaction, nucleation prefers to happen above buried quantum dots (QDs). Meanwhile, the effects of lateral interaction adjust the spacing of lateral neighboring QDs. The vertical coupling becomes strong with deceasing GaAs spacer height and increasing number of buried layers, while the lateral coupling becomes strong with increasing InAs wetting layer thickness. The phenomenon that, after successive layers, the spacing and size of QDs islands become progressively more uniform is explained according to the minimum potential energy theory. The vertical and lateral interactions in a multisheet array of InAs/GaAs quantum dots are analyzed by finite element method (FEM). It is shown that due to the effects of vertical interaction, nucleation prefers to happen above buried quantum dots (QDs). Meanwhile, the effects of lateral interaction adjust the spacing of lateral neighboring QDs. The vertical coupling becomes strong with deceasing GaAs spacer height and increasing number of buried layers, while the lateral coupling becomes strong with increasing InAs wetting layer thickness. The phenomenon that, after successive layers, the spacing and size of QDs islands become progressively more uniform is explained according to the minimum potential energy theory.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第5期677-680,共4页 材料科学技术(英文版)
基金 supported by the National Natural Science Foundation of China(No.10572155 and 10732100) Guangdong Science and Technology Bureau(No.2006A11001002)
关键词 Quantum dots Vertical and lateral interactions Finite element analysis Quantum dots Vertical and lateral interactions Finite element analysis
  • 相关文献

参考文献16

  • 1I.C. Robin, R, Andre, C. Bougerol, T. Aichele and S. Tatarenkoa: Appl. Phys. Lett., 2006, 88, 233103.
  • 2G.R. Liu and S.S. Quek Jerry: Semicond. Sci. Technol., 2002, 17, 630.
  • 3T. Benabbas, Y. Androussi and A. Lefebvre: J. Appl. Phys., 1999, 86, 1945.
  • 4G. Muralidharan: Jpn. J. Appl. Phys., 2000, 39, L658.
  • 5B.L. Liang, Zh.M. Wang, Yu.I. Mazur and G.J. Salamo: Appl. Phys. Lett., 2006, 89, 043125.
  • 6J. Tersoff, C. Teichert and M.G. Lagally: Phys. Rev. Lett., 1996, 76, 10.
  • 7Ronald E. Miller and Vijay B. Shenoy: Nanotechnology, 2000, 11, 139.
  • 8V.A. Shchukin and D. Bimberg: Appl. Phys. A, 1998, 67, 687.
  • 9S.M. Wise, J.S. Lowengrub, J.S. Kim, K. Thornton, P.W. Voorhees and W.C. Johnson: Appl. Phys. Lett., 2005, 87, 133102.
  • 10M. DeSeta, G. Capellini and F. Evangelisti: Phys. Rev. B, 2005, 71, 115308.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部