期刊文献+

基于二维成像的三维物体形状特征分析 被引量:4

Shape features for projected 2D images based 3D object recognition
原文传递
导出
摘要 目前三维物体识别方法在识别过程中所需数据量大、难以实用。该文简化三维物体识别过程,构建了一个基于单视点二维投影图像的三维物体识别系统。分别选取Zernike矩、基于Trace变换的Triple特征、MSA等三种形状特征,实现了对物体的视点空间的聚类划分。在普林斯顿三维模型库上,通过分类识别实验分析三种形状特征的性能。实验表明:特征对不同类别物体的分类效果差异明显。该文由此提出了针对目标物体形状及应用环境的特征选取方案。 Most 3D object recognition methods need too much information for the recognition process so they are not practical for real applications. This paper presents a 3D recognition system based on a single projected 2D image to simplify the 3D recognition process. The system uses zernike moments, trace transformations, and multi-scale autoconvolution for the clustering based viewpoint space partitioning. A shape analysis of the Princeton shape benchmark is used to investigate the recognition of the three features on different 3D shapes. The results show that none of these features is suitable for all kinds of shapes. Therefore, a feature selection strategy is developed for recognition of different shapes.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期1646-1650,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家自然科学基金资助项目(60502013) 国家"八六三"高技术项目(2006AA01Z115)
关键词 模式识别 形状特征分析 ZERNIKE矩 Triple特 MSA特征 pattern recognition shape feature analysis Zernike Triple MSA
  • 相关文献

参考文献9

  • 1Horn B. Extended Gaussian images [C]//Proc of the IEEE, 1984, 72(12): 1671-1686.
  • 2Saupe D, Vranic D V. 3D model retrieval with spherical harmonies and moments [C]//Proceedings of the DAGM, 2001, Munich, Germany, 2001: 392- 397.
  • 3Chen D Y, Ouhyoung M, Tian X P, et al. On visual similarity based 3D model retrieval [C]//Computer Graphics Forum, 2003, 22(3): 223-232.
  • 4Ansary T F, Daoudi M, Vandeborre J P. A bayesian 3D search engine using adaptive views clustering[J]. IEEE Transactions on Multimedia, 2007, 9(1) : 78 - 88.
  • 5Shilane P, Min P, Kazhdan N, et al. The princeton shape benchmark [C]//Proceeding of the IEEE Shape Modeling International 2004(SMI'04). Washington, DC: IEEE Computer Society, 2004 : 167 - 178.
  • 6叶斌,彭嘉雄.Zernike矩不变性分析及其改进(英文)[J].红外与激光工程,2003,32(1):37-41. 被引量:10
  • 7Petrou M, Kadyrov A. Affine invariant features from the trace transform [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(1) : 30 - 44.
  • 8Rahtu E, Heikkila J. Object classification with multi-scale autoconvolution [C]// Proceedings of the 17th International Conference on Pattern Recognition (ICPR'04). Washington, DIE, IEEE Computer Society, 2004, 3: 37-40.
  • 9边肇祺 张学工 等.模式识别[M].北京:清华大学出版社,2001..

二级参考文献5

  • 1[1]Teh C H, Chin R T. On image analysis by the methods of moments[J]. IEEE Trans Pattern Anal Machine Intell, 1988, 10(4):496-513.
  • 2[2]Khotanzad A, Hong Y H. Invariant image recognition by Zernike moments[J]. IEEE Trans Pattern Anal Machine Intell, 1990, 12(5):489-498.
  • 3[3]Prokop R J, Reeves A P. A survey of moment-based techniques for unoccluded object representation and recognition[J]. Graphical Models Image Process, 1992, 54(5):438-460.
  • 4[4]Yong-Sung Kim, Whoi-Yul Kim. Content-based trademark retrieval system using visually salient feature[J]. J Image Vision Computer, 1998, 16:12-13.
  • 5[5]Zernike F. Beugungstheorie des schneidenverfahrens und seiner verbesserten form, derphasenkontrastmethode[J]. Physica, 1934, 1:689-704.

共引文献66

同被引文献38

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部