期刊文献+

用于稀疏数据集的协作过滤算法 被引量:2

Collaborative filtering algorithm for sparse data sets
原文传递
导出
摘要 稀疏性问题是协作过滤算法应用中的一个突出问题,当系统中用户对资源的评分数据集很稀疏的条件下,算法的精度和覆盖率会显著降低。针对这一问题,该文通过分析影响基于资源的协作过滤算法中的相似性计算的因素,提出采用"资源关系密度"作为描述协作过滤评分矩阵的一个特征指标,分析并总结了"资源关系密度"对典型的基于资源的协作过滤算法的影响,进而提出一种虚拟用户填充算法。实验结果表明,虚拟用户填充法能够有效改善典型的基于资源的协作过滤算法在稀疏数据集上的精度和覆盖率。 This paper presents an algorithm to improve the performance of item-based collaborative filtering algorithms working with sparse data sets. The factors impacting the correlation calculation in item-based collaborative filtering algorithms were analyzed to develop an item relationship density as an important characteristic for describing the rating matrix, the effect of the item relationship density on item-based collaborative filtering is then illustrated. The item relation density is then used to develop a virtual user filling algorithm. That effectively improves the precision and coverage of item-based algorithms with sparse datasets. Thus the item relation density is a key characteristic factor for rating matrices.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2009年第10期1725-1728,共4页 Journal of Tsinghua University(Science and Technology)
基金 国家"八六三"高技术项目(2006AA010101) 国家"十一五"科技支撑计划资助项目(2006BAH02A12)
关键词 协作过滤 稀疏性问题 资源关系密度 虚拟用户填充 collaborative filtering sparse problem item relation density virtual user filling
  • 相关文献

参考文献5

  • 1Goldberg D, Nichols D, Oki M, et al. Using collaborative filtering to weave an information tapestry [J]. Comm ACM, 1992, 35(12): 61-70.
  • 2Sarwar B M, Karypis G, Konstan J A, et al. Item-based collaborative filtering recommendation algorithms [C]// Proceedings of the 10th International World Wide Web Conference (WWW10). Hong Kong, China, 2001.. 285 - 295.
  • 3Lemire D, Maclachlan A. Slope one predictors for online rating-based collaborative filtering [C]// SIAM Data Mining (SDM'05). Newport Beach, California, April 21-23, 2005.
  • 4GroupLens Research. Data Sets [EB/OL]. (October 05, 2006). http: //www. grouplens, org/taxonomy/term/14.
  • 5Jonathan L, Joseph A, Terveen G, et al. Evaluating collaborative filtering recommender systems [J]. ACM Transactions on Information Systems, 2004, 22(1) : 5 - 53.

同被引文献15

  • 1邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 2CHOI K, SUH Y. A new similarity function for selecting neighbors for each target item in collaborative fihering [ J]. Knowledge-Based Systems, 2013, 37: 146-153.
  • 3WANG Ming-jia, HAN Jin-ti. Collaborative filtering recommendation based on item rating and characteristic information prediction [ C ]// Proc of the 2nd International Conference on Consumer Electronics, Communications and Networks. [ S. l. ] : IEEE Computer Society, 2012:214-217.
  • 4WU Ye-kui, TANG Zhi-hao. Collaborative filtering system based on classification and extended K-means algorithm [ J]. Advances in In- formation Sciences and Service Sciences, 2011, 3 (7) : 187- 194.
  • 5WU Ye-kui, YAO Jian-rong, TANG Zhi-hao, et al. Collaborative ill- tering based on muhi-level item category system [ J]. Journal of Convergence Information Technology, 2012, 7(7) : 64-71.
  • 6FANG Mei-yu, ZHENG Xiao-lin, CHEN De-ren. A personalized re- commender algorithm based on fuzzy relation reputation model [ C ]// Proc of International Joint Conference on Service Sciences. [ S. l. ] : IEEE Computer Society, 2011 : 193-197.
  • 7郭艳红,邓贵仕.协同过滤系统项目冷启动的混合推荐算法[J].计算机工程,2008,34(23):11-13. 被引量:27
  • 8黄创光,印鉴,汪静,刘玉葆,王甲海.不确定近邻的协同过滤推荐算法[J].计算机学报,2010,33(8):1369-1377. 被引量:217
  • 9李改,李磊.基于矩阵分解的协同过滤算法[J].计算机工程与应用,2011,47(30):4-7. 被引量:58
  • 10邹永贵,望靖,刘兆宏,夏英.基于项目之间相似性的兴趣点推荐方法[J].计算机应用研究,2012,29(1):116-118. 被引量:14

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部