期刊文献+

多传感器多目标联合概率数据关联研究

Research of the joint probabilistic data association algorithm for multisensor-multitarget tracking
下载PDF
导出
摘要 提出改进联合概率数据关联算法对多传感器、多目标量测进行同源划分及单一传感器测量数据转换,并采用联合概率数据关联算法求解空间目标轨迹交叉时的数据关联。仿真结果表明,改进联合概率数据关联算法提高了成功关联概率,降低了求解数据关联概率的难度,可以解决密集目标的正确跟踪问题。 The amend joint probabilistic data association algorithm for muhisensor-muhitarget tracking was proposed. The same source observations were classified into the same set. Then the JPDA algorithm was treated as a combination problem of optimization. The simulation results show that the amend joint probability algorithm can increase the success rate of data association, and reduce calculation complexity. This algorithm can make the sensor track densely distributed targets correctly.
出处 《信息化纵横》 2009年第17期73-75,共3页
关键词 多传感器 多目标跟踪 联合概率数据关联 改进联合概率数据关联算法 muhisensor-muhitarget tracking joint probabilistic data association amend joint probability data association algorithm
  • 相关文献

参考文献3

二级参考文献6

  • 1逯宏亮,李伟仁.多目标数据关联的神经网络解算[J].系统仿真学报,2004,16(7):1536-1538. 被引量:6
  • 2袁刚才,吴永强.密集杂波环境下的快速数据关联算法[J].系统仿真学报,2006,18(3):561-564. 被引量:14
  • 3Sengupta D,Iltis R A.Neural Solution to the Multi-target Tracking Data Association Problem[J].IEEE Transactions on Aerospace and Electronic Systems(S0018-9251),1989,25(1):96-108.
  • 4Chin L.Application of Neural Networks in Target Tracking Data Fusion[J].IEEE Trans on Aerospace and Electronic Systems(S0018-9251),1994,30(1):281-287.
  • 5Lang Hong,Ning Zhou Cui.An Interacting Multipattern Joint Probabilistic Data Association (IMP-JPDA) Algorithm for Multitarget Tracking[J].Signal Processing (S0165-1684),2000,80(8):1561-1575.
  • 6V Vaidehi,N Chitra,M Chokkalingam,et al.Neural Network Aided Kalman Filtering for Multitarget Tracking Applications[J].Computers and Electrical Engineering (S0045-7906),2001,27(2):217-228.

共引文献170

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部