期刊文献+

非周期性多尺度问题的平均化方法

Homogenization Method of Non-Periodic Multi-Scale Problem
下载PDF
导出
摘要 提出了解决复合材料非周期性多尺度问题的平均化理论框架及其有限元实现方法,指出材料的力学性能应该是大量原子、分子、晶粒等微粒行为的宏观体现,分析了算法平均的重要性,论证了平均化有限元方法是解决多尺度问题的有效方法.进而采用该理论框架对于含有相同数量级规模的典型小尺度结构的非均质材料进行了分析.研究结果表明,平均化有限元的计算规模远低于直接有限元法的计算规模,并且二者精度能保持一致. In this paper, the basic idea and the finite element implementation of the homogenization theory applied in nonperiodic multi-scale problem were introduced. According to this, the mechanical properties are the macroscopic representation of particle behavior, such as atoms, molecules and grains. The importance of the arithmetic average is analyzed, and the homogenization method is proved to be the efficient method of solving multi-scale problems from algorithm analysis point of view. Furthermore, for heterogeneous materials with the same order of size of typical microscale structures, the calculation scale of finite element using the homogenization method is far less than that of the direct finite element method. The results show that the calculation accuracy of finite element using the homogenization method keeps consistent with that of the direct finite element method.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2009年第9期756-759,共4页 Transactions of Beijing Institute of Technology
基金 国家自然科学基金资助项目(10602008 10625208)
关键词 多尺度 平均化方法 非周期性夹杂 非均质材料 有限元 multi-scale homogenization method non-periodic inclusion heterogeneous materials finite element method
  • 相关文献

参考文献9

  • 1De Borst R. Challenges in computational materials science., multiple scales, multi-physics and evolving discontinuities [ J ]. Computational Materials Science, 2008,43:1 - 15.
  • 2Carter E A. Challenges in modeling materials properties without experimental input [J]. Science, 2008, 321: 800 - 803.
  • 3Guo Z, Yang W. MPM/MD handshaking method for multiscale simulation and its application to high energy cluster impacts[J]. International Journal of Mechanical Sciences, 2006,48 : 145 - 159.
  • 4Xiao S P, Belytschko T. A bridging domain method for coupling continua with molecular dynamics[J]. Computer Methods Applied Mechanics and Engineering, 2004, 193 :1645 - 1669.
  • 5Feyel F. A multilevel finite element method (FE2) to describe the response of highly non-linear structures using generalized continua[J]. Computer Methods Applied Mechanics and Engineering, 2003, 192: 3233- 3244.
  • 6Liu B, Huang Y, Jiang H, et al. The atomic-scale finite element method[J]. Computer Methods Applied Mechanics and Engineering, 2004,193 : 1849 - 1864.
  • 7Hassani B, Hinton E. A review of homogenization and topology optimization II-analytical and numerical solution of homogenization equations [ J ]. Computers and Structures, 1998,69:719 - 738.
  • 8Kreyszing E. Introductory functional analysis with applications [M ]. Beijing: Beihang University Press, 1987.
  • 9ZienkiewiczOC,TaylorRL.有限元方法,第1卷,基本原理[M].5版.北京:清华大学出版社,2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部