期刊文献+

一种认知无线电系统的传输调度方案 被引量:1

Transmission and Scheduling Scheme in Cognitive Radio Systems
原文传递
导出
摘要 将认知无线电系统中的传输调度方案建模为一个约束马尔科夫决策过程(CMDP),即在满足缓存器内包数约束的情况下最小化发送数据包消耗的平均功率。因为在认知无线电系统中,环境参数无法预先得知,为此利用R学习来自适应地获取CMDP的近似最优策略。在仿真结果中,对基于R学习的传输调度方案的性能进行了比较和分析,结果显示该方案能适用于参数未知的环境且有效地降低平均功率。 Transmission and scheduling scheme of average power minimization under the constraint of the number of packets in buffer is addressed as a constrained Markov decision process (CMDP). The environment parameters in cognitive systems could not known in advance, soRlearningis utilized to adaptively achieve thenearlyoptimal policy. Simulation results are given, thus to evaluate the performances of R learning-based scheme. These results show that the scheme adapts to the parameters-unknown environment and could reduce the average power effectively.
出处 《通信技术》 2009年第10期23-25,28,共4页 Communications Technology
基金 重庆邮电大学自然科学基金资助项目(编号A2007-18)
关键词 认知无线电 R学习 传输调度 cognitive radio R learning transmission and scheduling
  • 相关文献

参考文献7

  • 1余艳英,朱江,张盛峰.认知无线电系统中基于多标拍卖的信道分配机制[J].通信技术,2008(5):75-78. 被引量:6
  • 2李连宝,毛玉泉,李林,柏雪倩.认知无线电的关键技术研究[J].通信技术,2008,41(6):88-90. 被引量:11
  • 3Zhao Q, Tong L. Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework [J]. IEEE 3ournal Selected Areas in Communications, 2007, 15 (3): 589-600.
  • 4Wang H S, Moayeri N. Finite-State Markov Channel - A Useful Model for Radio Communication Channels [31. IEEE Transactions on Vehicular Technology, 1995, 44 (1): 163-171.
  • 5Chung T S, Goldsmith A. Degrees of Freedom in Adaptive Modulation: a Unified View [J]. IEEE Transactions on Communications, 2001, 49 (9): 1561-1571.
  • 6Mahadevan S. Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results [J]. Machine Learning, 1996, 22(3): 159-195.
  • 7Beutle J F, Ross W K. Optimal Policies for Controlled Markov Chains with a Constraint[J]. Journal of MathematicalAnalysis and Application, 1985, 112 (1): 236-252.

二级参考文献13

  • 1Mitola J. Cognitive Radio: An Integrated Agent Architecture for Software Defined Radio[D] . PhD Dissertation , Royal Inst. Technol. (KTH), Stockholm, Sweden, 2000.
  • 2Reed J H, Bastian C M. Understanding the issues in software defined cognitive radio[C]//. The mobile and portable radio research group, 2002.
  • 3Cabric D. Implementation Issues in Spectrum Sensing for Cognitive Radios Signals System s and Computers,2004[C].Conference Record of the Thirty-Eighth Asilomar Conference, 2004,1: 772-776.
  • 4Ganesan G, Li Y G. Agility Improvement through Cooperative Diversity in Cognitive Radio[C]. Proe. IEEE GLOBECOM 05, IEEE, Dee. 2005: 2505-2509.
  • 5FCC 03-289[S].
  • 6Robert W Brodersen, Adam Wolisz, et al. CORVUS:a cognitive radio approach for usage of virtual unlicensed spectrum[C]//. 14th IST Mobile Wireless Communications Summit. Dresden, Germany, 2005.
  • 7[1]Haykin S.Cognitive Radio:Brain-Empowered Wireless Communications[J].IEEE Journal on Selected Areas in Communications,2005,23(02):201-220.
  • 8[2]Kloeck C,et al.Auctions Sequence as a New Spectrum Allocation Mcchanism[C].14th IST Mobile & Wireless Communications Summit、Dresden,Germany,2005:Dresden,Germanyt IEEE Press,2005:435-439.
  • 9[3]Cao L,et al.Distributed Spectrum Allocation via Local Bargaining[C].IEEE Sensor and Ad Hoc Communications and Networks、Santa Clara,USA:Santa Clara,USA:IEEE Press,2005:475-486.
  • 10[4]Huang J.et al.Auction Mechanjsms for Distributed Spectrum Sharing[C].42nd Annual Allerton Conference on Communication Control and Computing、Monticello,USA,2004:Monticello,USA:IEEE Press,2004:1368-1377.

共引文献15

同被引文献12

  • 1廖楚林,陈劼,唐友喜,李少谦.认知无线电中的并行频谱分配算法[J].电子与信息学报,2007,29(7):1608-1611. 被引量:58
  • 2HAYKIN S. Cognitive radio: brain-empowered wireless communications [ J]. IEEE Journal on Selected Areas in Communications, 2005, 23(2) :201 -220.
  • 3MOTOLA J, MAGUIRE G Q. Cognitive radio: making software radios more personal[J]. IEEE Personal Communications, 1990, 6 (4): 13-18.
  • 4MADHUSUDHAN R M, PAUL C. Time domain spectrum allocation using game theory for cognitive radios [ C]//Proceedings of the 9th International Conference on Mobile and Wireless Communications Networks. New York: IEEE, 2007, 101 - 105.
  • 5SARAYDAR C U, MANDAYM N B, GOODMAN D J. Efficient power control via pricing in wireless data networks[ J]. IEEE Transactions on Communications, 2002, 50(2):291-303.
  • 6HUANG J, BERRY R, HONIG M L. Auction-based spectrum sharing [ J]. Mobile Networks and Application, 2006, 11 (3) : 405 - 408.
  • 7PENG C, ZHENG H, ZHAO B Y. Utilization and fairness in spectrum assignment for opportunistic spectrum access[ J]. Mobile Networks and Application, 2006, 11 (4) : 555 - 576.
  • 8ZHAO ZHIJIN, PENG ZHEN, ZHENG SHILIAN, et al. Cognitive radio spectrum allocation using evolutionary algorithms[ J]. IEEE Transactions on Wireless Communications, 2009, 8 (9) : 4421 - 4425.
  • 9EBERHART R C, KENNEDY J. A new optimizer using particle swarm theory [ C]//Proceedings of the 6th International Symposi- um on Micromachine and Human Science. New York: IEEE, 1995:39-43.
  • 10KENNEDY J, EBERHART R C. Particle swarm optimization [ C] // Proceedings of the IEEE International Conference on Neural Networks. New York: IEEE, 1995: 1942- 1948.

引证文献1

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部