期刊文献+

基于GMM说话人分类的说话人识别方法研究 被引量:4

Speaker Recognition Research Based on GMM Speaker Clustering Technology
原文传递
导出
摘要 提出了基于高斯混合模型(GMM)说话人分类的分级说话人识别系统,同时将小波神经网络(WNN)引入到子识别系统中。分别对未分级说话人识别系统和分级说话人识别系统进行了比较。仿真实验结果表明,分级网络在保证正确识别率的同时,不仅改善了网络训练速度,亦大大提高了识别响应速度。 Hierarchical speaker recognition system based on Gauss Mixed Model (GMM) speaker clustering technology is proposed, and the model of wavelet neural network (WNN) is introduced into the sub-recognition system. The hierarchical speaker recognition system is compared with the non-hierarchical system. The simulation results show that the hierarchical speaker recognition system is improved in network training speed and recognition response speed.
出处 《通信技术》 2009年第10期192-193,共2页 Communications Technology
关键词 说话人识别 小波神经网络 高斯混合模型 speaker recognition wavelet neural network: Gauss mixed model
  • 相关文献

参考文献8

  • 1Qin Jin, Schultz T, Waibel h. Far-Field Speaker Recognition[J]. IEEE Trans. on Audio, Speech and Language processing, 2007, 15(7):2023-2032.
  • 2张东阳,张国杰.说话人识别系统研究[J].通信技术,2007,40(11):356-358. 被引量:5
  • 3梁涛,张国杰,张效军.基于FPGA的说话人识别算法的实现[J].通信技术,2008,41(2):66-69. 被引量:4
  • 4Bing Sun. Hierarchical Speaker Identification Using Speaker Clustering[J]. IEEE 2003:299-304.
  • 5Burget L, Matejka P, Schwarz P. Analysis of Feature Extraction and Channel Compensation in a GMM Speaker Recognition System[J]. Trans. on Audio, Speech and language Processing, 2007,15(7):1979-1986.
  • 6Zhang Qinhua, Benveniste AI. Wavelet Networks[J]. IEEE Trans on Neural Networks, 1992,3(6):889-898.
  • 7Bing Xiang, Berger T. Efficient Text-independent Speaker Verification with Structural Gaussian Mixture Models and Neural Network[J]. IEEE Trans. on Speech and Audio Processing, 2003,11(5):447-456.
  • 8白莹,赵振东,戚银城,王斌,郭建勇.基于小波神经网络的与文本无关说话人识别方法研究[J].电子与信息学报,2006,28(6):1036-1039. 被引量:7

二级参考文献24

  • 1陈立万.基于语音识别系统中DTW算法改进技术研究[J].微计算机信息,2006,22(02Z):267-269. 被引量:28
  • 2彭玉华.小波变换与工程应用[M].京:科学出版社,2002..
  • 3Zhang Qinhua,Benveniste Al.Wavelet networks.IEEE Trans.on NeuralNetworks,1992,3(6):889-898.
  • 4Szu H,Telfer B,Kadambe S.Neural network adaptive wavelets for signal representation and classification.Optical Engineering,1992,31(9):907-1016.
  • 5Zhang J,Walter G.Wavelet neural networks for function learning.IEEE Trans.on Signal Processing,1995,43(6):1485-1497.
  • 6焦李成.神经网络的应用与实现.西安:西安电子科技大学出版社,1996,第一章.
  • 7Yoshihiro Yamamoto,Nikiforuk P N.A new supervised learning algorithm for multilayered and inter-connected neural networks.IEEE Trans.on Neural Network,2000,11(1):36-46.
  • 8Lamel L F,Kessel R H,Seneff S.Speech database development:Design and analysis of the acoustic-phonetic corpus.Proc.Speech Recognition Workshop(DARPA),1986:100-109.
  • 9胡航.语音信号处理[M].第二版,哈尔滨:哈尔滨工业大学出版社,2002.
  • 10Roy D, Pentland A. Automatic spoken affect analysis and classification[C]. ICAFGR, Killington, Vermont, USA, 1996:363- 367.

共引文献13

同被引文献25

  • 1李威武,王慧,邹志君,钱积新.基于细菌群体趋药性的函数优化方法[J].电路与系统学报,2005,10(1):58-63. 被引量:92
  • 2赵连伟,罗四维,赵艳敞,刘蕴辉.高维数据流形的低维嵌入及嵌入维数研究[J].软件学报,2005,16(8):1423-1430. 被引量:54
  • 3徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51. 被引量:67
  • 4BELKIN M, NIYOGI P. Laplacianeigenmaps for Dimen- sionality Reduction and Data Representation [ J ]. Neural Computation ,2003,15 ( 06 ) : 1373-1390.
  • 5SEUNG H S, LEE D D. The Manifold Ways of Perception [ J ]. Science ,2000,290( 5500 ) :2268-2269.
  • 6TENENBAUM J, SILVA D D, LANGFORD J. A Global Geometric Framework for Nonlinear Dimensionality Re- ductiaon[ J]. Science,2000,290(5500) :2319-2323.
  • 7ROWEIS S,SAUL L. Nonlinear Dimensionality Reduction by Locally Linear Embedding [ J ]. Science, 2000, 290 (5500) : 2323-2326.
  • 8HE X F, NIYOGI P. Locality Preserving Projections [ C ]//Advances in Neural Information Processing Sys- tem. Cambridge : MIT Press,2004 : 327- 334.
  • 9HE X F,YAN S C,HU Y X,et al. Face Recognition Using Kaplacian Faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(03) :328-340.
  • 10Deller J R, Hansen J H L, Proakis J G.Discrete-time processing of speech signals[M].New York, USA: Mac- millan Publishing Company, 1993.

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部