摘要
提出了基于高斯混合模型(GMM)说话人分类的分级说话人识别系统,同时将小波神经网络(WNN)引入到子识别系统中。分别对未分级说话人识别系统和分级说话人识别系统进行了比较。仿真实验结果表明,分级网络在保证正确识别率的同时,不仅改善了网络训练速度,亦大大提高了识别响应速度。
Hierarchical speaker recognition system based on Gauss Mixed Model (GMM) speaker clustering technology is proposed, and the model of wavelet neural network (WNN) is introduced into the sub-recognition system. The hierarchical speaker recognition system is compared with the non-hierarchical system. The simulation results show that the hierarchical speaker recognition system is improved in network training speed and recognition response speed.
出处
《通信技术》
2009年第10期192-193,共2页
Communications Technology
关键词
说话人识别
小波神经网络
高斯混合模型
speaker recognition
wavelet neural network: Gauss mixed model