期刊文献+

FINITE-TIME RUIN PROBABILITY WITH NQD DOMINATED VARYING-TAILED CLAIMS AND NLOD INTER-ARRIVAL TIMES 被引量:8

FINITE-TIME RUIN PROBABILITY WITH NQD DOMINATED VARYING-TAILED CLAIMS AND NLOD INTER-ARRIVAL TIMES
原文传递
导出
摘要 In 2007,Chen and Ng investigated infinite-time ruin probability with constant interest forceand negatively quadrant dependent and extended regularly varying-tailed claims.Following this work,the authors obtain a weakly asymptotic equivalent formula for the finite-time and infinite-time ruinprobability with constant interest force,negatively quadrant dependent,and dominated varying-tailedclaims and negatively lower orthant dependent inter-arrival times.In particular,when the claims areconsistently varying-tailed,an asymptotic equivalent formula is presented.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2009年第3期407-414,共8页 系统科学与复杂性学报(英文版)
基金 supported by the National Science Foundation of China under Grant No. 10671139.
关键词 Heavy tail negatively lower orthant dependent negatively quadrant dependent renewalmodel ruin probability. 到达时间 两两NQD列 索赔 破产概率 有限 渐近公式 象限 力量
  • 相关文献

参考文献11

  • 1WANGYuebao,YANGYang.THE STRUCTURE AND PRECISE MODERATE DEVIATIONS OF RANDOM VARIABLES WITH DOMINATEDLY VARYING TAILS[J].Journal of Systems Science & Complexity,2005,18(2):224-232. 被引量:3
  • 2S.Asmussen.Subexponential asymptotics for stochastic process:Extremal behavior,stationary distributions and first passage probabilities[].Annals of Applied Probability.1998
  • 3Vladimir Kalashnikov,Dimitrios Konstantinides.Ruin under interest force and subexponential claims: a simple treatment[].Insurance: Mathematics and Economics.2000
  • 4Lehmann,EL.Some concepts of dependence[].Annals of Mathematics.1966
  • 5Bingham NH,Goldle CM,Teugels JL.Regular Variation[]..1987
  • 6Cline DBH,Samorodnitsky G.Subexponentiality of the product of independent random variables[].Stochastic Processes and Their Applications.1994
  • 7Chen, Y.Q,Ng, K. W.The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims[].Insurance: Mathematics and Economics.2007
  • 8Tang,Q.Asymptotic ruin probabilities of the renewal model with constant interest force and regular variation[].Scand Actuar J.2005
  • 9Kluppelberg, C.,Stadtmfiller, U.Ruin probabilities in the presence of heavy-tails and interest rates[].Scand Actuar J.1998
  • 10Konstantinides,D.,Tang,Q. H.,Tsitsiashvili,G.Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails[].Insurance: Mathematics and Economics.2002

二级参考文献16

  • 1P. Embrechtz, C. Kluppelberg and T. Mikosch, Modelling Extremal Events for Insurance and Finance, Springer, Berlin, etc., 1997.
  • 2H. Cramer, Sur un nouveau theoreme-limite de la theorie des probabilites, Actualites Sci. Indust.,1938, 736.
  • 3Yu. V. Linnik, On the probability of large deviation for the sums of independent variables, on Proc. 4th Berkeley Symp. Math. Stat. Prob., 1961, 2: 289-306.
  • 4A. V. Nagaev, Integral limit theorems for large deviations when Cramer's condition in not fulfilled 1,2, Theor. Probab. Appl., 1969, 14: 51-64, 193-208.
  • 5A. V. Nagaev, Limit tileorems for large deviations when Cramer's conditions are violated(in Russian), Fiz-Mat. Nauk., 1969, 7: 17-22.
  • 6S. V. Nagaev, Large deviations for sums of independent random variables, In Transactions of the Sixth Prague Conference on Information Theory, Random Processes and Statistical Decision Functions, Academic, Prague, 1973, 657-674.
  • 7C. C. Heyde, A contribution to the theory of large deviations for sums of independent random variables, Z. Wahrscheinlichkeitsth, 1967, 7: 303-308.
  • 8C. C. Heyde, On large deviations problems for sums of random variables which are not attracted to the moral law, Ann. Math. Statist., 1967, 38: 1575-1578.
  • 9C. C. Heyde, On large deviations probabilities in the case of attraction to a nonnormal stable law,Sankya, 1968, 30: 253-258.
  • 10D. B.H. Cline, T. Hsing, Large deviations probabilities for sums and maxima of random variables with heavy or subexponential tails, Texas A & M University, Preprint, 1991.

共引文献2

同被引文献37

  • 1袁德美.随机变量的截尾与几个经典强大数定律的推广[J].应用概率统计,2005,21(1):61-66. 被引量:9
  • 2WANGYuebao,YANGYang.THE STRUCTURE AND PRECISE MODERATE DEVIATIONS OF RANDOM VARIABLES WITH DOMINATEDLY VARYING TAILS[J].Journal of Systems Science & Complexity,2005,18(2):224-232. 被引量:3
  • 3陈平炎.两两NQD列的强大数定律[J].数学物理学报(A辑),2005,25(3):386-392. 被引量:22
  • 4季洁鸥,林正炎.同分布ND序列加权和的强大数律[J].浙江大学学报(理学版),2007,34(5):499-504. 被引量:4
  • 5Chen Y, Ng K W. The ruin probability of the renewal model with constant interest force and negatively dependent heavy-tailed claims [J]. Insurance: Mathematics and Economics, 2007, 40: 415-423.
  • 6Liu L. Precise large deviations for dependent random variables with heavy tails [J]. Statistics and Probability Letters, 2009, 79: 1290-1298.
  • 7Chen Y, Chen A and Ng K W. The Strong law of large numbers for extended negatively dependent random variables [J]. Journal of Applied Probability, 2010, 47: 908-922.
  • 8Ebrahimi N and Ghosh M. Multivariate negative dependence [J]. Communications in Statistics: A Theory Methods, 1981, 10: 307-337.
  • 9Block H W, Savits T H and Shaked M. Some concepts of negative dependence [J]. Annals of Proba- bility, 1982, 10: 765-772.
  • 10Leipus R and Siaulys J. Asymptotic behaviour of the finite-time ruin probability under subexponen- tial claim sizes [J]. Insurance: Mathematics and Economics, 2007, 40:498 508.

引证文献8

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部