期刊文献+

基于核主成分分析的图像去噪

Image Denoising Based on Kernel Principal Component Analysis
下载PDF
导出
摘要 简介了核主成分分析的原理及利用核主成分分析的图像去噪方法。通过使用核函数,在特征空间中对噪声图像使用主成分分析进行降噪处理。基于MDS的思想,使用核方法计算出在特征空间中降噪后的图像与其邻域点之间的内积约束关系,通过核函数重构出在原空间中降噪图像与其邻域点的内积约束关系,基于此内积约束关系在原空间中重构出降噪图像,从而达到通过核主成分分析对图像降噪的目的。比原有的MDS算法更稳定,对图像的噪声部分有更好的去除效果。 The principle of kernel principal dressed based on the kernel principal component component analysis and the problem of image denoising are adanalysis. At first, Image denoising using principal component analysis is processed in feature space. Based on MDS, inner product between the reconstructed point and its neighbors in the origin space is obtained through the dot product kernel function using the inner product between the reconstructed point and its neighborhood points in the feature space. And finally the pre-image is reconstructed in the origin space using this relationship of the inner product constraint. Compared with the original MDS, the algorithm gets better results on the image denoising and better stability.
作者 贾亚琼
出处 《科学技术与工程》 2009年第19期5667-5671,共5页 Science Technology and Engineering
关键词 核主成分分析 核函数 局部线性重构 投影系数 kernel principal component analysis kernel function local linear reconstruction coefficient of the projection.
  • 相关文献

参考文献12

  • 1Scholkopf B, Smola A, Muller K R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computaion, 1996; 10 (44) : 1299--1319.
  • 2Mika S, Scholkopf B, SMOLA A, et al. Kernel PCA and de-noising in feature spaces. Advances in Neural Information Processing Systems, 1999 ; 11:536-542.
  • 3Kwok J T, Tsang I W. The pre-image problem in Kernel method. IEEE Transactions On Neural Networks,2004 ; 15 (6) : 1517-1525.
  • 4Bakr G H, Weston J, Scho B lkopf. Learning to find pre-images. Advances in Neural Information Processing Systems,2004;16:449-456.
  • 5Zheng Weishi, Lai Jianhuang, Yuen P C. Weakly supervised learning on pre-image problem in kernel method. IEEE Transactions on Neural Networks, 2006 ;2 : 711-715.
  • 6Zheng Weishi, Lai Jianhuang. Regularized locality preserving learning of pre-image problem in kernel principal component analysis. IEEE Transactions On Neural Networks, 2006 ;2:456-459.
  • 7Scholkopf B, Smola A. Learning with Kernels. Cambridge, Massachusetts Lodon, England: the MIT, 2002 ; 18-37.
  • 8Bach F R, Jordan M I. Kernel independent component analysis. The Journal of Machine Learning Research, 2001 ;3:1-48.
  • 9Muller K R, Mika S, Ratsch G, et al. An introduction to kernelbased algorithms. IEEE Transactions on Neural Networks , 2001 ; 12 (2) : 181-202.
  • 10Teixeira A R, Tome A M, Stadlthanner K, et al. KPCA denoising and the pre-image problem revisted. Digital Signal Processing, 2008 ; 18:568-580.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部