期刊文献+

自适应噪声消除算法的性能比较与仿真 被引量:6

Performance Comparisons and Simulations of Adaptive Noise Cancellation Algorithms
下载PDF
导出
摘要 在信号处理中,噪声往往是非平稳和随时间变化的,传统方法很难解决噪声背景中的信号提取问题。通过对自适应噪声消除原理的研究,介绍了基于参考信号和基于预测原理的两种自适应噪声消除(ANC,Adaptive Noise Cancellation)方法,分析对比了基于最小均方(LMS,Least Mean Squares)、递推最小二乘(RLS,Recursive Least Squares)和平方根自适应滤波(QR-RLS,recursive least squares based on QR decomposition)三种噪声消除算法的性能。仿真结果表明:这几种算法都能从高背景噪声中有效地抑制干扰提取出有用信号,显示出了良好的收敛性能。相比之下,RLS算法和QR-RLS算法呈现出更快的收敛速度、更强的稳定性和抑噪能力。 In the signal processing,the noise is often non-smooth and time-varying,so the traditional method is difficult to solve the signal extraction problem from the background noise. Through the study on the principle of adptive noise cancellation, two de-noising method that based on reference signal and principles of prediction have been introduced, and noise canceling performance of the LMS algorithms,RLS algorithms and QR_RLS algorithms were compared. The results of computer simulations show that all of these adaptive algorithms can restrain the disturbance effectively and extract the true signal in strong background noise,shows a good convergence performance. In comparison,the RLS algorithm and QR _RLS algorithm take on faster convergence speed,stronger stability and stronger ability to suppress noise.
出处 《科学技术与工程》 2009年第19期5835-5839,共5页 Science Technology and Engineering
基金 国家自然科学基金(50776030)资助
关键词 自适应噪声消除 自适应滤波器 噪声 ANC adaptive filtering noise
  • 相关文献

参考文献6

  • 1Greenberg J E. Modified LMS algorithms for speech processing with an adaptive noise canceller. IEEE Trans on Speech and Audio Processing,1998;6(4) :338-351.
  • 2Haykin S. Adaptive filter theory. New Jersey : Prentice Hall, Inc ,2002.
  • 3徐蕾,孙金生,王执铨.自适应滤波的研究新方向[J].控制与决策,1999,14(1):8-13. 被引量:10
  • 4Greenberg J E, et al. Modified LMS tlgorithms for speech processing with an adaptive noise canceller. IEEE Transactions on Speech and Speech and Audio Processing. S1063-6676. 1998 ;6(4) :338-351.
  • 5Moustakides G V. Study of the transient phase of the forgetting factor RLS. IEEE Trans. Signal Processing, 1997 ;45:2468--2476.
  • 6殷文铮,杜旭.基于简化型RLS算法的延迟改进型噪声抵消系统模型与实现[J].电声技术,2006,30(2):55-57. 被引量:6

二级参考文献1

  • 1LONG G Z, LING F Y, PROAKIS J G. The IMS algorithm with delayed coefficient adaptation[J]. IEEE Trans on Signal Processing, 1989,37(9):1 397-1 405.

共引文献14

同被引文献37

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部