摘要
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.
The surface rainfall processes and diurnal variations associated with tropical oceanic convection are examined by analyzing a surface rainfall equation and thermal budget based on hourly zonal-mean data from a series of two-dimensional cloud-resolving simulations. The model is integrated for 21 days with imposed large-scale vertical velocity, zonal wind, and horizontal advection obtained from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) in the control experiment. Diurnal analysis shows that the infrared radiative cooling after sunset, as well as the advective cooling associated with imposed large-scale ascending motion, destabilize the atmosphere and release convective available potential energy to energize nocturnal convective development. Substantial local atmospheric drying is associated with the nocturnal rainfall peak in early morning, which is a result of the large condensation and deposition rates in the vapor budget. Sensitivity experiments show that diurnal variations of radiation and large-scale forcing can produce a nocturnal rainfall peak through infrared and advective cooling, respectively.
基金
supported by the National Key Basic Research and Development Project of China (Grant No. 2009CB421505)
the National Natural Sciences Foundation of China under Grant No. 40775031 and Grant No. GYHY200706020