摘要
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions. Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation. The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing. This cooling develops a mixed layer without initiation of deep convection by surface fluxes. Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL) cloud development. The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing. Over STBL regions, the lower boundary layer becomes warmer and drier. It also weakens vertical motion and zonal trade winds in the eastern Pacific, which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation; that is, cloud cover damps the tropical circulation.
The effect of a vertical diffusion scheme over a stratocumulus topped boundary layer (STBL) was investigated using the YONU AGCM (Yonsei University Atmospheric General Circulation Model). To consider the impact of clouds on the turbulence production, the turbulence mixing term, driven by radiative cooling at the cloud top, is implemented as an extended non-local diffusion scheme. In the model with this new scheme, the STBL parameterization significantly influences the lower atmosphere over the tropical and subtropical regions. Consideration of the turbulent mixing within the cloud layer leads to continuous stratocumulus formation. The cloud-top radiative cooling tends to favor more rapid entrainment and produces top-down turbulent mixing. This cooling develops a mixed layer without initiation of deep convection by surface fluxes. Variations in thermodynamical and dynamical features are produced by planetary boundary layer (PBL) cloud development. The simulated stratocumulus induces more mixing of heat and moisture due to the cloud forcing. Over STBL regions, the lower boundary layer becomes warmer and drier. It also weakens vertical motion and zonal trade winds in the eastern Pacific, which indicates that stratocumulus cloud cover plays a role in weakening the Walker circulation; that is, cloud cover damps the tropical circulation.
基金
supported by Ministry of Environment of Korea as "The Eco-technopia 21 Project"
supported by Pusan National University under the "Post-Doc. 2008 Program"