期刊文献+

一类周期为pq阶为2的Whiteman广义分圆序列研究 被引量:4

Study on a Class of Whiteman-Generalized Cyclotomic Sequence with Length pq and Order Two
下载PDF
导出
摘要 线性复杂度是度量序列随机性质最重要的指标之一。该文基于Whiteman-广义分圆,构造了一类周期为pq阶为2的广义分圆序列。证明了适当的选取参数p和q,该类序列的线性复杂度的下界为pq-p-q+1,且该类序列为平衡序列。最后指出了准确计算该序列的线性复杂度所必须解决的问题。 Linear complexity is one of the most important indexes for measuring the randomness properties of sequences.Based on Whiteman-generalized cyclotomy,a new class of generalized cyclotomic sequences with length pq and order 2 is constructed.It is proved that the lower bound of linear complexity of the sequence is pq - p - q+ 1with the proper selection of parameters p andq,and the sequence has balance property.Finally,this paper points out the method for determine linear complexity.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第9期2205-2208,共4页 Journal of Electronics & Information Technology
基金 国家自然科学基金(60773003) 国家部级基金资助课题
关键词 伪随机序列 Whiteman-广义分圆 线性复杂度 特征集 Pseudo-random sequence Whiteman-generalized cyclotomy Linear complexity Characteristic set
  • 相关文献

参考文献11

  • 1Cusick T, Ding C, and Renvall A. Stream Ciphers and Number Theory[M]. Elsevier/North-Holland. North-Holland Mathematical Library 55, 1998: 195-226.
  • 2Ding C and Helleseth T. On cyclotomic generator of order τ [J]. Information Processing Letters, 1998, 66(1): 21-25.
  • 3Whiteman A L. A family of difference sets [J]. Illinois Journal of Mathematics, 1962, 6(2): 107-121.
  • 4Ding C and Helleseth T. New generalized cyclotomy and its applications[J]. Finite Fields and Their Applications, 1998, 4(2): 140-166.
  • 5Ding C. Linear complexity of generalized cyclotomic binary sequences of order 2[J]. Finite Fields and Their Applications, 1997, 3(2): 159-174.
  • 6Bai E J, Liu X J, and Xiao G Z. Linear complexity of new generalized cyclotomic sequences of order of length pq[J].IEEE Transactions on Information Theory, 2005, 51(5): 1849-1853.
  • 7Ding C. Autocorrelation values of generalized cyclotomic sequences of order two[J]. IEEE Transactions on Information Theory, 1998, 44(4): 1699-1702.
  • 8Li S Q, Chen Z X, and Sun R, et al.. On the randomness of generalized cyclotomic sequences of order two and length pq [J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A(9): 2037-2041.
  • 9Li S Q, Chen Z Q, and Fu X T, et al.. Autocorrelation values of new generalized cyclotomic sequences of order two and length pq [J]. Journal of Computer Science and Technology, 2007, 22(6): 830-834.
  • 10Chen Z X and Li S Q. Some notes on generalized cyclotomic sequences of length pq[J]. Journal of Computer Science and Technolog, 2008, 23(5): 843-850.

同被引文献31

  • 1白恩健,刘晓娟.Some Notes on Prime-Square Sequences[J].Journal of Computer Science & Technology,2007,22(3):481-486. 被引量:1
  • 2BAI En-jian, FU Xiao-tong, XIAO Guo-zhen. On the linear complexity of generalized cyclotomic sequences of order four over Zpq [ J]. IEICE Trans on Fundamentals of Electronics, Communications and Computer Sciences ,2005, E88-A( 1 ) : 1699-1702.
  • 3YAN Tong-jiang, HONG Li, XIAO Guo-zhen. The linear complexity of new generalized cyclotomic binary sequences of order four[J]. Information Sciences,2008,178 ( 3 ) : 807- 815.
  • 4DING C. Linear complexity of generalized cyclotomic binary sequences of order 2[ J]. Finite Fields and Their Applications, 1997,3 (2) :159-174.
  • 5DING C,HELLESETH T. New generalized cyclotomy and its applications[ J ]. Finite Fields and Their Applications, 1998,4 ( 2 ) : 140- I66.
  • 6ZHANG Jing-wei, ZHAO Chang-an, MA Xiao. On the linear complexity of generalized cyclotomic binary sequences with length 2p2[ J]. IEICE Trans on Fundamentals of Electronics ,2010,21 (2) :93-108.
  • 7Cusick T W, Ding C, A. Renvall. Stream Ciphers and Number Theory [M]. Amsterdam: Elsevier, 1998.
  • 8Massey J L. Shift register synthesis and BCH decoding [J]. IEEE Trans Inf Theory, 1969,15(1) : 122-127.
  • 9Ding C, Helleseth T, Shah W. On the linear complexi- ty of Legendre sequence[J]. IEEE Transactions In- formation Theory ,1998,44(3):1276-1278.
  • 10Chen Z, Du X, Xiao G. Sequences related to Legend- re/Jacobi sequences[J]. Information Sciences, 2007, 177(21) :4820-4831.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部