期刊文献+

基于改进的子类判决分析的SAR目标特征提取与识别 被引量:4

SAR Target Feature Extraction and Recognition Based on Improved Clustering-based Discriminant Analysis
下载PDF
导出
摘要 针对大多文献中假设合成孔径雷达(SAR)数据服从单模分布带来的问题,该文提出改进的子类判决分析(ICDA),它假设SAR目标数据服从更合理更实际的多模分布。首先采用快速全局k-均值聚类算法找到每类目标的子类划分,然后基于子类判决分析(CDA)准则寻找最优的投影矢量,使得投影后不同类别的子类样本之间距离最大而每个子类内部的样本散布最小。用美国运动和静止目标获取与识别(MSTAR)计划录取的SAR地面静止目标数据的实验结果表明,ICDA可获得较好的对真实目标的分类性能和对干扰目标的拒判能力。 In many literatures, Synthetic Aperture Radar (SAR) data is usually supposed to obey the unimodal distribution, unsuitable in the applications. To overcome the limitation, an Improved Clustering-based Discriminant Analysis (ICDA) method is proposed, which assumes the distribution of each class for SAR data is multimodal, a more reasonable and practical assumption. The detailed procedure of ICDA is to first partition each class of the SAR data into multiple clusters via the fast global k-means clustering algorithm, and then try to find the projection vectors such that the projections of every pair of clusters from different classes are well separated while the within-cluster scatter is minimized. Experimental results performing on SAR ground stationary targets based the Moving and Stationary Target Acquisition and Recognition (MSTAR) public database show that ICDA has better classification capabilities of three true objects classes and rejection capabilities of two confusers classes.
出处 《电子与信息学报》 EI CSCD 北大核心 2009年第9期2264-2268,共5页 Journal of Electronics & Information Technology
基金 教育部长江学者和创新团队支持计划(IRT0645) 国家自然科学基金(60772140)资助课题
关键词 合成孔径雷达 自动目标识别 子类判决分析 快速全局k-均值聚类算法 Synthetic Aperture Radar(SAR) Automatic Target Recognition(ATR) Clustering-based Discriminant Analysis(CDA) Fast global k-means clustering algorithm
  • 相关文献

参考文献16

  • 1Ross T D, Worrell S W, and Velten V J, et al.. Standard SAR ATR evaluation experiments using the MSTAR public release data set. Proc. of SPIE on SAR Imagery V, Orlando, Florida, 1998, 3370: 566-573.
  • 2Bryant M L and Garber F D. SVM classifier applied to the MSTAR public data set. Proc. of SPIE on SAR Imagery Ⅵ, Orlando, Florida, 1999, 3721: 355-360.
  • 3Zhao Q and Principe J C. Support vector machines for SAR automatic target recognition. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2): 643-654.
  • 4Yuan C and Casasent D P. A new SVM for distorted SAR object classification. Proc. of SPIE on Optical Pattern Recognition ⅩⅥ, Bellingham WA, 2005, 5816: 10-22.
  • 5Ramamoorthy L D and Casasent D P. Classification and rejection of MSTAR data. Proc. of SPIE on Optical Pattern Recognition ⅩⅤ, Orlando, Florida, 2004, 5437: 265-276.
  • 6Bryant M L. Target signature manifold methods applied to the MSTAR database: preliminary results. Proc. of SPIE on SAR Imagery Ⅷ, USA: SHE, 2001, 4382: 389-394.
  • 7Patnaik R and Casasent D. MSTAR object classification and confuser and clutter rejection using minace filters. Proc. of SPIE on ATR ⅩⅥ, Bellingham, 2006, 6234: 1-13.
  • 8Sun Y J, Liu Z P, and Todorovic S, et al.. Adaptive boosting for SAR automatic target recognition. IEEE Trans. on Aerospace and Electronic Systems, 2007: 43(1): 112-125.
  • 9宦若虹,杨汝良,岳晋.一种合成孔径雷达图像特征提取与目标识别的新方法[J].电子与信息学报,2008,30(3):554-558. 被引量:15
  • 10宦若虹,杨汝良,岳晋.SVM和HMM相结合的合成孔径雷达图像目标识别[J].系统工程与电子技术,2008,30(3):447-451. 被引量:10

二级参考文献22

  • 1徐正光,武楠,穆志纯.基于独立分量分析的人耳识别方法[J].计算机工程,2006,32(19):178-180. 被引量:7
  • 2Vapnik V N. An overview of statistical learning theory[J]. IEEE Trans. on Neural Networks, 1999, 10(5), 988 - 999.
  • 3Zhao Q, Principe J C. Support vector machines for SAR automatic target recognition[J]. IEEE Trans. on Aerospace and Electronic Systems, 2001, 37(2) : 643 - 654.
  • 4Rabiner L. A tutorial on hidden Markov models and selected ap- plications in speech recognition [J]. Proceedings of IEEE, 1989,77: 257- 286.
  • 5Albrecht T W, Gustafson S C. Hidden Markov models for classifying SAR target images[J]. Proc. SPIE, 2004,5427:302 - 308.
  • 6Albrecht T W, Bauer Jr K W. Classification of sequenced SAR target images via hidden Markov models with decision fusion [J]. Proc. SPIE, 2005,5808: 306-313.
  • 7Sandirasegaram N, Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery [J]. Proc. SPIE, 2005,5808: 314-325.
  • 8Ross T D, Worrell S W, Velten V J, et al. Standard SAR ATR evaluation experiments using the MSTAR public release data set [J]. Proc. SPIE, 1998,3370: 566-573.
  • 9Sandirasegaram N and Englisth R. Comparative analysis of feature extraction (2D FFT and wavelet) and classification (Lp metric distances, MLP NN, and HNeT) algorithms for SAR imagery. Proc. SPIE, 2005, Vol. 5808: 314-325.
  • 10Vapnik V N. An overview of statistical learning theory. IEEE Trans. on Neural Networks, 1999, 10(5): 988-999.

共引文献33

同被引文献23

  • 1Ge Yong Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China Cheng Qiuming Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Earth Systems and Mineral Resource Engineering Lab, China University of Geosciences, Wuhan 430074, China Zhang Shenyuan Department of Earth and Atmospheric Science, York University, Toronto, ON, M3J 1P3, Canada,Department of Resource and Earth Science, China University of Mining & Technology, Beijing 100083, China.Edge Effect Correction in the S-A Method for Geochemical Anomaly Separation[J].Journal of China University of Geosciences,2004,15(4):379-387. 被引量:31
  • 2Lin Y L,Bhanu B.Evolutionary feature synthesis for object recognition[J].IEEE Transactions on Systems,Man,and Cybernetics-PartC:Applications and Reviews,2005,35(2):156-171.
  • 3Lin Y L,Bhanu B.Object detection via feature synthesis using MDL-based genetic programming[J].IEEE Transactions on Systems,Man,and Cybernetics-Part B:Cybernetics,2005,35(3):538-547.
  • 4Verbout S M,Alison L,Weaver,et al.New image features for discriminating targets from clutter[C] ∥Part of the SPIE Conference onRadar Sensor Technology III Orlando.USA:Florida,1998:120-137.
  • 5胡利平,刘宏伟,吴顺君.一种新的SAR图像目标识别预处理方法[J].西安电子科技大学学报,2007,34(5):733-737. 被引量:20
  • 6Baraniuk R, Candes E, Elad M, et al.Applications of sparse representation and compressive sensing[J].Proceedings of the IEEE,2010,98(6) : 906-909.
  • 7Wright J,Yang A,Ganesh A.Robust face recognition via sparse representation[J].IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2009,31 (2) : 210-227.
  • 8Sainath T, Ramabhadran B,Nahamoo D, et al.Sparse repre- sentation features for speech recognition[C]//INTERSPEECH 2010, Chiba, Japan, 2010 : 2254-2257.
  • 9Candes E, Wakin M, Boyd S.Enhancing sparsity by re- weighted 11 minimization[J].Journal of Fourier Analysis and Applications, 2008,14(5/6) : 877-905.
  • 10Bruckstein A,Donoho D,Elad M.From sparse solution of system of equations to sparse modeling of signals and image[J].SIAM Review, 2009,51 ( 1 ) : 34-81.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部