期刊文献+

活化温度对酚醛基活性炭纤维的孔结构和电化学性能的影响 被引量:1

INFLUENCES OF ACTIVATION TEMPERATURE ON PORE STRUCTURE AND ELECTROCHEMICAL PERFORMANCES OF PHONEMIC RESIN BASED ACTIVATED CARBON FIBERS
原文传递
导出
摘要 从酚醛纤维出发,经过炭化和KOH活化制备了酚醛基活性炭纤维(PACF),并对不同温度下活化样品的比表面积、孔结构以及所制备的双电层电容器(EDLC)的电化学性能之间的关系进行了探讨。氮气(77K)吸附法测定PACF活性炭纤维的孔结构和比表面积;采用循环伏安、交流阻抗、恒流充放电等测试对超级电容器的电化学性能进行了测试。结果表明:900℃是KOH活化酚醛纤维制备用于EDLC电极材料的最佳活化温度,该温度下活化样品具有最佳的循环性,稳定性和较小的内阻,比表面积为2311m^2·g^-1和比电容264.IF·g^-1(充放电电流为1000mA·g^-1)。PACF系列样品均呈现出典型的微孔炭的特征,不同活化温度下制备的PACF,虽然表现出不同的比表面积和比电容,但是其整体孔径分布范围基本相同,都在0.5nm~3.0nm之间。随活化温度的升高,样品的电容性能和功率特性越来越好,内阻也随活化温度的升高而降低。 Phonemic resin based activated carbon fibers (PACF) were prepared by treating phonemic resin based fibers with KOH at different temperatures. The relationship between specific surface areas and pore structures of PACF with the corresponding electric double layer capacitors EDLCs electrochemical performances were discussed in detail. The BET specific surface areas and pore structure parameters of all PACF samples were determined by the low temperature gas adsorption isotherm method. The electrochemical propertics of EDLCs using PACF as electrodes and the capacitive behavior were systematically studiedusing by cyclic voltammetry. AC impedance and constant current charge/discharge test. It was found that the PACF activated at 900℃ exhibits appropriate specific surface area (2 311m^2 · g^-1)and specific capacitance (264.1F · g^-1. All samples are typically microporous structure. Although the PACFs activated at different temperatures show different specific surface areas and specific capacitances, the pore size distributions are similar for all samples. Within the rauge of 0. 5nm to 3.0nm. With the increase of activation temperature,the resulting PACFs show the decrease in terms of resistance expressed by AC impedance as well as increasing specific capacitance and power capability.
出处 《炭素》 2009年第1期8-13,共6页 Carbon
关键词 酚醛基活性炭纤维 孔结构 比表面积 电化学性能 phonemic resin based activated carbon fibers pore structure specific surface areas electrochemical properties
  • 相关文献

参考文献10

  • 1南俊民,杨勇,林祖赓.电化学电容器及其研究进展[J].电源技术,1996,20(4):152-156. 被引量:25
  • 2Holland C E. Weidner J W. Dougal R A. et al. Experimental characterization of hybrid power systems under pulse current loads [J]. Journal of power Sources, 2002,109 : 32-- 37.
  • 3Jarvis L P. Atwater T B,Cygan P J. Fuel cell/ electrochemical capacitor hybrid for intennittent high power applications [J]. Journal of Power Sources. 1999,79 - 60-- 63.
  • 4Zheng J P,Huang J,Jow T R. The limitations of energy density of electrochemical capacitors. J Electrochem Soc, 1997,144 (6) : 2026--2031.
  • 5M. J. Spamaay. The electric double layer[M]. Sydney.Pergamon Press Pty. Ltd.. 1972,4.
  • 6M. Matsumoto. Electrical phenomena at interface : fundamentals, measurements and applications [M]. Vol. 76. Surfactant science series. New York. Marcel Dekker, Inc. , 1998,87-- 99.
  • 7A. G. Pandolfo. A. F. Hollenkamp. Carbon properties and their role in supercapacitors [J]. Journal of Power Sources. 2006,157(1) : 11--27.
  • 8S. Sarangapani,B. V. Tilak,C. P. Chen. Materials for electrochemical capacitors [J]. J. Electrochem. Soc, 1996,143 (11) : 3791 --3799.
  • 9Eabuchi J. Synthese and application of activated carbon/carbon composite electrode[J]. Chemical Industry,1992,7:2127.
  • 10Yoshida A,Tanahashi I. Nishino A. Effect of concent ration of surface acidic functional groups on electric double--layer properties of activated carbon fibers [J]. Carbon, 1990,28: 611--619.

共引文献24

同被引文献25

  • 1松井恒平,高畠里咲,安东信雄,等.锂离子电容器:中国,CN1954397[P].2007-04-25.
  • 2KATZ H,BOGEL W,BUCHEL J P.Industrial awareness of lithium batteries in the world during the past two years[J].J Power Sources,1998,72(1):43-50.
  • 3BURKE A,MILLER M.The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications[J].J Power Sources,2011,196:514-522.
  • 4WEINERT J X,BURKE A F,WEI X Z.Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement[J].J Power Sources,2007,172(2):938-945.
  • 5AIDA T,MURAYAMA I,YAMADA K,MORITA M.High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode[J].J Power Sources,2007,166(2):462-470.
  • 6FANG B Z,BINDER L.A modified activated carbon aerogel for high-energy storage in electric double layer capacitors[J].J Power Sources,2006,163(1):616-622.
  • 7PASQUIER A D,PLITZ I,GURAL J,BADWAY F,AMATUCCI G G.Power-ion battery:Bridging the gap between Li-ion and supercapacitor chemistries[J].J Power Sources,2004,136(1):160-170.
  • 8WANG H,YOSHIO M,THAPA A K,NAKAMURA H.From symmetric AC/AC to asymmetric AC/graphite,progress in electrochemi-cal capacitors[J].J Power Sources,2007,169(2):375-380.
  • 9KHOMENKO V,RAYMUNDO P E,BEGUIN F.High-energy density graphite/AC capacitor in organic electrolyte[J].J Power Sources,2008,177(2):643-651.
  • 10WANG D W,LI F,LIU M,LU G Q,CHENG H M.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J].Angewandte Chemie International Edition,2008,47(2):373-376.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部