摘要
Knott(诺特)方程是AVO理论公式的位移位表达形式。同一个弹性界面的边值定解问题在数学上的不同表述方式将导致Knott方程出现多种表达形式。研究表明,XOZ平面内,P和SV平面简谐波入射到弹性界面时遵循的Knott方程共有8种独立表达形式,其中纵波和横波各有4种;对于相同类型的平面简谐波入射和相同的入射介质,不同形式的Knott方程可以完全统一于相同表达形式的能量平衡方程。
Knott equation is the analytical indication of AVO theory. The amplitude ratios of incidents of harmonic plane waves at a plane interface between two elastic half spaces of different properties are governed by Knott equations, which are significant in the researches of elastic wave propagation and oil explorations. It is essential to learn the differences in expressions of Knott equations caused by different mathematic definitions and restrictions of a certain boundary value problem. The results show that there are to-tally 8 independent expressions from Knott equations for the incidences of plane harmonic P and SV waves in XOZ plane, in detail, 4 for P waves and 4 for SV waves. For those incidences of the same type in one half space with different Knott-equation expressions, their corresponding energy equilibrium equations are identical.
出处
《海洋地质与第四纪地质》
CAS
CSCD
北大核心
2009年第3期149-153,共5页
Marine Geology & Quaternary Geology
关键词
Knott方程
弹性界面
二维平面
拉梅方程
入射方式
Knott equation
elastic interface
expression
2D plane
Lamé equation
coordinate system
incident mode