期刊文献+

基于Tsallis熵冗余度的超谱特征选择算法性能评价

Evaluating the performance of hyperspectral feature selection algorithm using Tsallis entropy redundancy
原文传递
导出
摘要 分析了超谱数据处理过程中概率统计和相关分析典型的特征选择准则,指出了直接将其用做评价指数的弊病,进而提出了一类基于Tsallis熵冗余度的评价指数。该指数正比于多个变量间的相关信息含量,可以很方便地构造出适合超谱数据特征选择算法的评价方法。在AVIRIS数据的评价实验中,当两组相同数目波段集合的总体分类精度相差不小于2%时,基于2次Tsallis熵冗余度的评价方法正确率可达75%;当总体分类精度相差不小于8%时,正确率可达90%。 Feature selection is a widely used technique in hyperspectral data processing,but there is little work. concerning the evaluation of the performances with respect to different feature selection methods especially when the ground truth map is absent. This paper analyzes the selection criterion from probabilistic statistics and correlation analysis, and points out the disadvantage of directly using them for evaluation application, and then proposes the evaluation index based on the Tsallis entropy redundancy. This index has direct proportion in the relevant information among multi variables, and can be easily extended for the classification performance evaluation of hyperspectral feature selection. The AVIRIS data has been applied to the proposed method and the results show that when the overall classification difference is no less than 20% ,the correct rate of evaluation is greater than 75% ,furthermore,when the difference is no less than 8 %, the correct rate is greater than 90 %.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2009年第6期784-788,共5页 Journal of Optoelectronics·Laser
基金 国家自然科学基金资助项目(60604021 60874054)
关键词 特征选择 TSALLIS熵 冗余度 超谱数据 分类性能评价 feature selection Tsallis entropy redundancy hyperspectral data classification performance evaluation
  • 相关文献

参考文献11

  • 1Guo B F,Damper R hGunn S R,et al. A fast separability-based feature selection method for high-dimensional remotely-sensed image classification[J]. Pattern Recognition,2008,4](5) : 1653-1662.
  • 2田伟刚,郭雷,李晖晖,杨卫莉.基于区域互信息的特征级多光谱图像配准[J].光电子.激光,2008,19(6):799-803. 被引量:7
  • 3Melgani F,Bruzzone L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE Transactions on Geoscience and Remote Sensing,2004,42(8):1778-1790.
  • 4Shah C A,Watanachaturapom P,Arora M K,et al. Some recent results on hyperspectral image classification[C]. Proceedings of IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data,2003:346-353.
  • 5Bruzzone L,Roli F,Serpico S B. An extension of the Jeffreys-tvlatusita distance to multiclass cases for feature selection[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995,33(6) :1318-1321.
  • 6Guo B F,Gunn S R,Damper R I,et al. Band selection for hyperspectral image classification using mutual information[J]. IEEE Geoscience and Remote Sensing Letters,2006,3(4) :522-526.
  • 7Wang Q,Shen Y,Zhang Y,et al. Fast quantitative correlation analysis and information deviation analysis for evaluating the performances of image fusion techniques[J]. IEEE Transactions on Instrumentation and Measurement, 2004,53(5) : 1441-1447.
  • 8Johal R S,Timakli U. Tsallis versus Renyi entropic form for systems with q-exponential behaviour:the case of dissipative maps[J]. Physica A:Statistical Mechanics and its Applications,2004,331 (3-4):487- 496.
  • 9Landgrebe D. Hyperspectral image data analysis[J]. IEEE Signal Process Magazine,2002,19(1):17-28.
  • 10ZHENG Zhen Hu Yin-xin et al.ZHANG Yan-xin,Investigation of eye gaze based on independent component analysis and support vector machine.光电子.激光,2007,18(7):491-494.

二级参考文献17

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部